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Introduction

The purpose of this monograph is to present the theories of basic

tensor analysis and of the differential geometry of surfaces for the

purpose of formulating problems of coordinate generation in regions

bounded by arbitrary curves or surfaces. Since the writing of the first

memoir on the subject of tensor analysis by Ricci and Levi-Civita [11

in 1901 some very significant developments in the theory of tensor

analysis have taken place, though, the major applications of the subject

have only been confined to the general theory of relativity and to the

continuum mechanics. In this monograph an attempt has been made to

utilize the theories of classical tensor analysis and differential

geometry of surfaces in developing new methods for the generation of

coordinates in arbitrary regions. Only those results of tensor theoretic

and differential geometric significance have been explained which are

needed in the development of the subject in a fruitful manner. However,

it turns out that for a better understanding and a sound conceptual

orientation some basic ideas, by the way of definitions and notations,

have also to be introduced. Though this elementary exposition forms a

small part of the total effort, and is explained much better in the

references given below, nevertheless, its inclusion imparts a sort of

continuity to the whole presentation.

Almost all the material explained in Parts I and II of this monograph

is available in the standard texts, such as, Levi-Civita [2], Weatherburn

[3), McConnell [41, Eisenhart [51, [6], Tolman [7], Graustein [8],



Synge and Schild [9], Brand [10], Spain [111, Truesdell and Toupin

[12], Struik [13], Sokolnikoff [14], Willmore [15], O'Neill [16],

and Kreyszig [17], [18], on the classical topics in tensors and dif-

ferential geometry. Some other texts and monographs which can be used

with advantage are Aris [19], Borisenko and Tarapov [20], Stoker [21],

Spivak [22], do Carmo [23], FlUgge [24], Howard [25], and Eiseman [26].

Part III of this monograph is the culmination of the ideas

developed in Parts I and II. Specifically §§2 and 8 of Part I and

§§2 and 3 of Part II provide the necessary material for the development

of new methods of coordinate generation. It is the hope of the author

that the material of Part III will form a framework for further research

in the area of mesh generation for physical problems, based on partial

differential equations.

2 .



Part I

Fundamental Concepts and Basic Tensor Forms

§U. Preliminaries.

In this section we summarize some elementary operations on vectors

and tensors with the assumption that an Euclidean space is available in

which a set of rectangular Cartesian coordinates has been introduced.

Further, to maintain a sort of continuity of exposition with the rest

of the sections, we also clarify the nomenclature of some commonly used

terms. For further details the reader is referred to References [4 ],

ill] and [14].

In this report the vectors and tensors will be denoted by using the

symbol - under and above a letter, respectively. Thus, the vectors are

denoted as u, p, etc., and the tensors as T, T, etc.

A rectangular Cartesian system of coordinates in a three-dimensional

Euclidean space will usually be denoted by x i (i = 1,2,3), or, occasionally

as x,y,z. The orientation of axes will always be assumed to be right-

handed.

X1

x

Figure 1.
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The basis of a rectangular Cartesian coordinate system will be denoted

by a system of constant unit vectors ei (i = 1,2,3). The components

of a vector v with respect to a rectangular Cartesian system will be

denoted by v I (i - 1,2,3).

§1.1. Summation Convention on Cartesian Components.

A repeated index on quantities either appearing as a single entity

or as products will imply summation, Thus

aibi alb I + a 2 b2 + a3 b3  (la)

i i 1 1j a 2T2  3 3j
a iT ij a 1lTlij + a 2 T2j + a 3 T3j (lb)

Tii =T 1 1 + T2 2 + T3 3  (1c)

while no summation is implied in

Tij + T (2)
ii ji

§1.2. Vector Multiplications Using Cartesian Components.

(i) Scalar or dot product:

a• b = ab cose (3a)

= ab (3b)
i i

where e is the angle between a and b, and a, b are the magnitudes

of the vectors a and b respectively. Obviously

a = = • =aa (4)

4ii

4 4



(ii) Cross product:

vx b

= (ab sine)n (5)

where n is the unit vector normal to the plane containing a and b.

The i-th component of v is then

= eijkajbk (6)ijkj

where e. is the permutation symbol . The permutation symbol has

the value +1 if i,j,k are taken in a right-handed cyclic permutations

of 1,2,3; the value -1 if ij,k are in the cyclic permutations of

1,3,2. Thus

e =1 , e3 21 -i , e11 2 = 0, etc.

'N

3
Figure 2.

(iii) Scalar triple product:

a -(b xc) a 1 b1 I (7)

t ii k
Also sometimes written as e

2 '-~



a (b x c) = b (c x a) =c (a x b) (8)

(iv) Vector triple product:

(a x b) x c = b(a •c) -a(b * c) (9)

a x (b x c) = b(a c) - - b) (10)

(v) Lagrange identity:

(a x b) • (c x d) = (a c)(b d) - (a • d)(b c) (11)

§1.3. Placement of Indices (Covariant and Contravariant).

For simplicity consider a two-dimensional rectilinear but skew

coordinate system in a plane as shown in Fig. 3a.

X^ D

01

Figures 3a, b, c.

Let a vector w emanate from the point 0. We now decide not to use any

subscripted variables on the components of w since we want to develop a

consistent method of index notation. Obviously there are two ways to

write the vector w in a linear form.

6



(i) Parallel projection:

Let X and p be a basis for the coordinate axes Ox and Oy

respectively as shown in Fig. 3b. From the tip of w draw lines

parallel to OX and OY to have a parallelogram OAPB. Thus

w Ap + pq (12)

where p and q are the components of w with respect to the basis

(X,w). To find the lengths OA and OB, we introduce unit vectors

Then

w= uJAIp + vlplq (13)

so that AJXp and Jplq are the respective parallel projections of w

on the coordinate axes.

(ii) Orthogonal projection:

Another method of writing w in a linear form is to draw

perpendicular lines PD and PC on the coordinate axes as shown in

Fig. 3c. We now draw lines OX' and OY' parallel respectively to

PD and PC. Obviously the axes OX' and OY' are perpendicular to OY

and OX respectively. Let ti, and X be the basis for this new coordinate

system. Then

w = qR + XS (14)

But since

7



so that writing

r w • , sw 

we obtain

w p r + s (15)

Because of the two possible linear representations of the

same vector w, viz. (13) and (15), it is important to introduce a

new system of labeling. It is a standard convention to write

'p x
I : a , = a2

X
•~i - 'ij • -

so that

a 1 =l ,a 2 •a 2  1 a *a 2 = a2 •a I  0

p w q w2

r =w I , s w 2

Thus (13) and (15) can be written as

w -a aW + a w2  (16)

8



w a1w1 + aw 2  (17)

The quantities wi are called the covariant components, and wi are

called the contravariant components of the same vector w. Similarly

the vectors ai and a are respectively the covariant and contravariant

base vectors. It is easy to conclude that if the axes OX and OY are

orthogonal, thus forming a rectangular Cartesian coordinate system,

then there is no distinction between the covariant and contravariant

components.

§1.4. Dyads.

An indefinite product of two vectors a and b written as

= ab (18)

is called a dyad. Some authors put the symbol between a and b. It

is instructive to view dyads as operators since their utility lies in

the area of operations with vectors or other dyads. In Cartesian coor-

dinates we can also write

= aibjeiej  (19)

The dyad ba is the transpose of $ written as 4*. Thus

= ba (20)

so that

= aibjeje i  (21)

9



§1.4.1. Operations with Dyads.

The scalar product of a dyad with a vector u is a vector. That is,

v u (22)

In general the vector w obtained by pre-multiplication

w = u • (23)

is different from v. However, it is easy to verify that

v = u = u* (24)

For two arbitrary vectors v and w, we have the result

Y) =v • (* •W) (25)

The unit dyad is defined as

=e.e. (26)

since its dot product with a vector

is again v, viz.,

v= v (27)

The scalar product of two dyads

ab , = cd

10



is

s (cd ) = (b * c )a 4 (28 )

The double scalar or inner product is defined as

=(ab) (ed)

= (a c)(b d) (29)

§1.5. Curvilinear Coordinates.

General curvilinear coordinates introduced either in Euclidean or

non-Euclidean spaces (cf. §2) will always be denoted by x i  As stated

earlier, the rectangular Cartesian coordinates will be denoted by x .

The general coordinates also form a right-handed system.

In general coordinates x , a repeated lower and upper index on

quantities either appearing as a single entity or as products will

always imply summation. Thus

i
A.. =A +A +A 3

ij j 2j 3j

A~a. = A~a + A~a + A3a
1i j j2 j 3

but no summation is implied in the expression

A + A? on either i or J.

All quantities, with the exception of xi and xi , with subscripts

are termed covariant components, while all with superscripts are termed

11



contravariant components. It is customary in all the standard works

i
cited before to call v. and v as covariant and contravariant vectors1

respectively. Similar is the case with tensors too. However, it is

clear that they are the respective components of the same entity v or

T. Occasionally it is helpful to write the entity form such as

vi = v.a (30)

T ij k 9
Ti= a= ka (31)

where as described before, a are the contravariant base vectors, or the

reciprocal basis to ai . The two bases are related as

a • a. = 6 (32)

where 6 is the mixed Kronecker delta defined as

i6i =1 if i= j

=0 if i .j

i
§1.5.1. Various Representations in Terms of ai and a .

All quantities which follow certain transformation of coordinate

rules are called tensors. Thus scalars and vectors are also tensors of

orderst zero and one respectively. However, it is customary to name the

quantities of orders greater than or equal to two as tensors. The order

of a tensor is determined by the total number of free indices used in

Also called ranks.

12
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the description of its components. Thus T is a third order tensor;k

covariant of order two and contravariant of order one. The total

number of components of a tensor T are given by e, where N is the

space dimension and m the order of the tensor. Thus T k has 27 components
jk

in a three-dimensional space.

The dyadic representation of the unit tensor I (also called the

Idem tensor) in general coordinates is

= a.a (33)

i

In eq. (30), v and vj are the contravariant and covariant components of

a vector v, while in eq. (31) T'i are the contravariant components of a

second order tensor T. The covariant components of T are given by

- i •

T = T..a a (34)

A tensor is said to be symmetric if

Tj =Tj

and (35)

Tij =Ji

In entity form symmetry implies

A tensor is said to be antisymmetric if

Tij -- Tji

13



. ..- - I - , . . .I . . .

and

Tij =T ji 
(36)

or,

= - .

Note that the transpose of the representation (34) is

T..aJ a
i

and of (31) is

T Tija ja (37)
-3i-i

1.6. Differential Operations in Curvilinear Coordinates.

The continuity and differentiability of vector and tensor functions

in general coordinates follow the 3ame rules as those by functions of

real variables in multivariate calculus. Thus, let p(x i) be a scalar

function of general coordinates. Then its first differential is given

by

do= - dx' (38)

ax i

i i i
where dx are the differentials of the coordinates x . Also since dx

are the contravariant components of the displacement vector dr (cf. §2.),

we have

dr = a dxi (39)

14
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Scalar multiplication with ai on both sides of (39) and a use of eq. (32)

gives

dx = a i •dr (40)

Thus

d= a) - dr (41)
ax

Equation (41) defines the operator V or grad as

de (grad p) • dr (42)

where

grad = V = a i (43)a x i

The divergence (div or V .) of a vector function is given by

div v =V v a (44)

ax(

and the curl or Vx as

3v
curl v V x v =a x --= (45)

ax

1.6.1. Gradient of Vectors and Divergence of Tensors.

i
Let v be a vector function of x then

av

dv =a dxi  (46a)
- axi

15



=dx' i a (46b)

ax i

Using (40) in (46a) and (46b), we get

av i av i
dv a dr= -a) *dr (47a)

ax ax

=(dr -a)-'-dr -(a -~-- ) (47b)
ax'i ax'1

Thus there is a duality in the representation of grad v. It can be either

represented as

Sa or a
ax' ax'

In this report, we take the first representation to represent grad v, i.e.,

av i
grady v (48)

ax

then its conjugate is

(grad v)* a (49)
ax

As is obvious from eqs. (47), we have the identity

dv =(grad v) * dr =dr* (gradyv)* (50)

In the same manner, we define the gradient of a tensor as

grad T= a (51)
ax~ -

16



The divergence of a tensor is then the trace of (51), that is

div i' * (52)
axi

Below we list some important vector and tensor formulae involving

vectors and tensors under the operations of grad, divergence and curl,

[271.

(i) For two vectors u and v, the divergence of the dyad uv is

div(uv) = (grad u) * v + (div v)u (53)

(ii) If f is a scalar, then

div(if) = grad f (54)

(iii) The Laplacian of a vector u is

V2u =div(grad u) = grad(div u) - curl(curl u) (55)

(iv) (grad u) u i grad( JqJ2) + (curl u) x u (56) :

(v) For two vectors u and v

(curl u) x v = [grad u -(grad u)*] v (57)

(vi) div(grad u) * = grad(div u) (58)

(vii) grad(u y ) = (grad u)~ v + (grad v)* u (59a)

(viii) curl(u x v) = div(uv -vu) (59b)

17



(ix) div[grad u - (grad u)*] = -curl(curl u) (60)

(x) I : grad u = div u (61)

(xi) For a tensor T and a vector u,

div(T • u) = (div T*) • u + T* (grad u) (62)

(xii) If T is a symmetric tensor and r is the position vector, then

div(r xT) =r x (divT) (63)

(xiii) Let 2 be a skewsymmetric tensor in a three-dimensional space,

then

Q 0 =0 £ =0
11 = 0,22 ' 33

(64)

12 = 21 ' 13 = -31 ' 23 -32

With 2 we can associate a vector w, such that

(xiv) div 2 = -curl w (65)

(xv) div 2 = curl w (66) !

For an arbitrary vector v

(xvi) v w xv (67)

(xvii) Q (grad v) = w • (curl v) (68)

For an arbitrary tensor T

(xvii;) w x T = T (69)

§2. Euclidean and Riemannian Spaces

tRefer to §8 of Part I for a complete discussion on spaces.
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Spaces of various kinds, abstract as well as perceivable, are

needed to analyze mathematically the basic nature of practically all

problems in engineering science. The most widely studied is the

Euclidean space EN of dimension N. We shall usually be interested in

E 3 space, though most of the results are immediately extensible to any

value of N. The most important property of an Euclidean space is that

in this space rectangular Cartesian coordinates can always be introduced

on a global scale. As an aid to form some intuitive ideas about spaces,

it is worthwhile to realize that the two-dimensional space formed by the

surface of a sphere is non-Euclidean since rectangular Cartesian coordi-

nates cannot be introduced in it on a global scale.

In rectangular Cartesian coordinates the position vector r of a point

from the origin is obviously given by

r = e.x. = e x + e x + e x (70)

This type of global expression for the position vector r is not available

in terms of general coordinates x either in the Euclidean or non-Euclidean

spaces. Nevertheless, the infinitesimal vector dr, which is the directed

segment between two infinitesimally close points, is fundamental to all

geometric considerations. According to Lanczos [28], the line element ds

(s is the arc length) which is the magnitude of dr, viz.,

ds = Idrl

is the fountainhead of metrical geometry. To fix ideas, let in E3 a

Cartesian coordinate system has already been introduced. Then the
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infinitesimal vector dr is given by

dr = ek dxk

where for the purpose of further comparison we have written xk xk

The magnitude ds is then given by

(ds)2 =dr dr = ek •edxkdx

=6 kZdxkdx (71)

where 6 is the Kronecker delta,

6k£ =1 if k =

=0 if k # .

i
In E 3 we now introduce a curvilinear coordinate system x The

i
infinitesimal vector dr is then a function of x , so that

dr = rI  = a.dx i  (72)

- ax'

and
(ds)2 = dr dr = ij)dxdxj

Writing

a •aj =gi (73)

we obtain
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(ds) 2  dxldx a  (74)
= gii

The coefficients gij are functions of xi and are called the fundamental

metric coefficients of the chosen space. The chosen space is still

Euclidean and fundamentally its metric coefficients are the constants

6 but because of the introduction of a curvilinear coordinate system
iii

the gij are expressed as functions of xi. The introduction of a curvi-

linear coordinate system in E
3 does not change the nature of space 

.

It is obvious from (73) that gij is symmetric, i.e.,

g i (75)

and using the condition that ds is an invariant, we can equate (71) and

(74). This equation immediately yields the expressions for the gi. in

terms of the derivatives of the Cartesian coordinates with respect to

the curvilinear coordinates.

The name "Euclidean" for a space is due to the fact that in this

space the five axioms and five postulates of Euclid are assumed to be

true. Some important consequences on the basis of these axioms and

postulates are summarized below.

(i) The Pythagorean theorem for right triangles can be proved both

in the infinitesimal and global regions.

(ii) Possibility of introducing rectangular Cartesian coordinates

both in the infinitesimal and global regions.

(iii) Global parallelism. That is, a vector in E3 or En can be

tAccording to Lanczos (28] p. 236, this understanding was the motive force
in overcoming the difficulties which Einstein faced in the year 1914 while
working on the theory of general relativity.

21



displaced parallel , itself on any space curve without a

change in magnitt Thus in an Euclidean space, a parallel

field of vectors is constant in magnitude and direction.

Now though the metric equation (74) has been obtained by introducing

curvilinear coordinates in an Euclidean space, we have only used the

results (i) and (ii), implicitly through Eq. (72), on an infinitesimal

basis. Further, no where in the derivation of (74) the result (iii) on

global parallelism has been used. Following Riemann, we now take (74)

as the one and only axiom of a geometry in which the functions gij are

arbitrary but continuous and at least twice continuously differentiable

i
functions of the coordinates x . Because of the general nature of such

gi's this geometry will be non-Euclidean. However, the possibility of

introducing a rectangular Cartesian system locally in this general space

in an infinitesimal region still exists. These assertions have been

proved in §8.2. Spaces in which the Euclidean background has been

deleted and the formula for the metric is as given in (74) are called

Riemannian.

The purpose of the preceding two paragraphs has been to bring out

the subtle differences between the Euclidean and non-Euclidean spaces.

It so happens that a majority of analytical constructions (such as the

gij considered before and obtained essentially from Euclidean considera-

tions) can immediately be interpreted in the sense of a Riemannian space.

This technique eliminates some of the abstractness surrounding the tensor

theory and allows us to obtain all the essential formulae of Riemannian

geometry while essentially remaining in the Euclidean space. This is the

scheme for further development of the subject in this report. It must be
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realized that most of the Riemannian constructions are analytic by

nature since the human mind is not capable of imagining a curved

surface of dimensions greater than two.

§3. Fundamental Tensor Structures and Transformation Laws.

The fundamental metric tensor gij was earlier defined through the

use of the base vectors as

gi- =a. *a. . (76)

If the contravariant base vectors a are multiplied scalarly then we

define the new second order components

g i = a 1 (77)

To find the relation between gij and g we first write an arbitrary

vector A both in the covariant and contravariant components

A = Aa , A = Aa.
1~ ~ -j

so that

A.a =Aa. (78)

Taking the dot product of both sides of (78) by ak and using (32), we get

Ak = gjkAi (79)

k
Similarly, taking the dot product with a , we get

Ak = g ikAi (80)
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Solving the set of equations (79) for Ak , we have

A G
i k

A (81)

where

g = det(gi.) (8 2a)

ik
g ikG  (by Kramer's expansion) (82b)

ikk

and Gik is the cofactor of gik in the determinant g. Comparing (80) and

(81), the required relation is

ik G ik = cofactor of g ik in g (83)
g g g (3

The tensor components g ik are called the conjugates of the metric compo-

nents gik" Equation (83) can also be expressed as

g (grsg1t - grtgzs)/g (84)

where the groups (i,r,Z) and (J,s,t) separately have their indices in

the cyclic permutations of 1,2,3, in this order. Obviously g 3 are also

symmetric in i,j.

ii
Having defined g , we find from Eqs. (79) and (80) that if the

contravariant components of a vector are known then the covariant compo-

nents can be obtained, and vice versa. In (79) the index has been lowered

and in (80) the index has been raised. These operations are called low-

ering or raising an index respectively through gij and g
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§3.1. Relations Between the Base Vectors.

From eq. (32) we have the fundamental relation between the co-

variant and contravariant base vectors, which is

a a j = & (85)~ 1

Equation (85) shows that one vector from the reciprocal basis a is

orthogonal to two vectors from the basis a.. Thus, for example, a2 x a3

must be parallel to a1 , so that

al = P(a2 x a3) (86a)

where p is a scalar function of the coordinates. Further, since a1 a=,

we have

= a " 2(a x a)
p -1 -2 -3

Using the vector formula given in (8), we also have

1
1-- . (a a2 (a 3 (86b)

p • (2 x 3)  2 "(3 x3 -i (4i x 42)

All the possible forms such as in (86a) can therefore be written as

i= p(ai x ak) (87)

where i, J, k are in the cyclic permutations of 1, 2, 3, in this order.

Similar considerations show that

a = q(am x an) (88)
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where X, m, n are in the cyclic permutations of 1, 2, 3, in this order.

From (87) and (88) using (11), we get

i mn nm~(9
6 = pq(6 6 k - 6n6 k )  (89)

so that

pq-- 1

Further, on the basis of the result (84) it is easy to show, using (87)

and (11), that

p 1
, q g

Having obtained the values of p and q, we can rewrite (87) and (88) in

the following useful forms

a=xa k /9 e ja (90a)

aj x ak =1 e j k a (90b)
~ - g -1

Note that from (90a,b) we also have

i 1 " "kje- aj  x (90c)

e (ag x a ) (90d)
- 2 ijk a  ×

where e i j  is also a permutation symbol written in contravariant form

so as to be consistent with the summation convention.

We now use the rule of lowering and raising an index to base vectors.

It is obvious that

k
a = gka (91)

a g k (92) [
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If eq. (91) is rewritten using different indices as

a. = ita (93)

then the dot product of (91) and (93) gives

k2.

k=gik jk

From this we obtain the important result

gg = 
6 k (94)

in (33), the idem tensor I referred to general coordinates was

defined. We can also write (33) as

= 6'aa (95)j~i ~

Using (91) and (92), the other two representations are

iaJ

Sgaa (96)
ij

=gij aiaj  (97)

The use of base vectors also allows us to write vectors and tensors in

the entity forms. The choice of a particular form of components is usually

dictated by the user according to his needs. For writing tensors, the

following forms can be used.
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(i) All components in contravariant form.

(ii) All components in covariant form.

(iii) All components in mixed covariant-contravariant form.

In eqs. (30) and (31) we expressed a vector and a second order

tensor in component forms. Thus, for a vector

i
v v a i  (98a)

= v.ai (98b)

For a tensor of the second order,

ij

T Tla~ a .  
(99a)

=Tij aia (99b)

Ti aia (99c)

= T a (99d)

Using (92) for a in (99b) and then equating with (99c) we get

T = ginT (100)

Similarly, using (91) for a. in (99a) and equating with (99d), we get

T, ~m (101)

~i

The dot placed before an index indicates which index has been raised or

lowered.
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Tensors of various orders can be written by using as many base

vectors as the order of the tensor. When there is no confusion in

recognizing which symbol has been raised or lowered, we may suspend

the use of dots. Thus

ili2 ip

Tjlj2"* "iq

are the mixed components of a tensor of (p + q)th order; covariant of

order q and contravariant of order p.

53.2. Transformation Laws for Vectors and Tensors.

We now consider the transformation laws for vectors and tensors under

i -i
a change of the coordinate system x to x . Implicitly there is a func-

tional relation between the two coordinate systems, viz., the coordinates

-i i
x are functions of the coordinates x . Thus

-i ixj
x (x) (102)

We assume that the mapping or transformation (102) is nonsingular so that

the functions 4 are continuously differentiable and their functional

determinant (i.e., Jacobian)

J = det(--) (103)

is no where vanishing. This implies that the functions (102) can be

inverted to have

x= (104)
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(i) Vectors:

The simplest but fundamental is the vector dr. When the coordinate

i
system is x , then as noted earlier

ar
dr = - dx (105a)

~ ax

~I
-a dx (105b)

i -I
On change of coordinates from x to x , the same vector dr can be written

as

3r
dr = ~.- dx (106a)

ax'

= a.dxi (106b)

Obviously

a.dxj = a dxi (107)

By the chain rule of differentiation, we have

dx j = 3x dxi  (108a)

ax
-

= . dx j  (108b)
axi

Using (108a,b) in (107), we obtain

-i

a. = a (109a)
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axi
a 1-x 1 (109b)

A study of (108a) and (109a) or (108b) and (109b) is revealing. It

suggests that the set of quantities dxi and set of vectors a follow
i -i

different transformation laws on changing from x to x or vice versa.

Quantities which transform in the manner of (108) are called the contra-

variant components while those which transform in the manner of (109) are

called the covariant components. Thus dr is a vector whose contravariant

ii
components are dx , while the vectors a. are called the covariant base

vectors. (This was the reason for denoting the coordinates as x and

base vectors as a.). Another simple vector which has covariant components

in a natural way is the gradient of a scalar. If f is a scalar, then its
i 8

first partial derivatives with respect to x are - On changing the
-i xi

coordinates to x , we have

- = a f (110)

3xi axi a2X

which is exactly of the form (109a). Thus the first partial derivatives

of a scalar form the covariant components of the vector grad f.

Based on the above deductions we now state the transformation laws

for any vector A.

The contravariant components A of the vector A change to A on a

ichange of coordinates from x
i to x Iaccording to the laws

A =- Aj (lia)
axi
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Aj = Axj Xi (1lb)

ax

Similarly, the covariant components A transform according to the laws

A -- A. (112a)

A. ---A (112b)
3 ax~ I

It must be noted that the transformation laws for vectors are linear.

That is, the vector components in the new system are linear functions

of the vector components in the old system.

(ii) Tensors:

Consider a second order tensor T. Because of the tensor invariance,

we again have

Tija a (113a)

-T aka£  (113b)

Using the transformation law of base vectors (109a) in (113a), we easily

get

_k ax k ax TiZ

Tk _ TiJ (114)

ax a

Similarly

TiJ = axi axj Tk (115)
-k -ZRax ax

- -32



Equations (114) and (115) are the tran, formation laws for the contra-

variant components of a tensor

For the covariant components we again have from the invariance

condition

Taking the dot product with a , we get

T..aa • a = T a k6 z
ij- p kk- p

But

a m
a = a -

p -- p

so that
m

T. 'xi a Y a k
Im 8--p ~ ~

Taking another dot product with a , we obtain

- xS x- T (116a)
np xn --p sm

Similarly

T =:! 2 T (116b)
sm axs m np

Equations (116) are the transformation laws for the covariant components

of a tensor.
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Following the same procedure, we list the transformation laws for

the mixed components. Starting from

T=T aa =T aak

we get

-- k -ax aj s
T = - T (117a)

•p a-p ax m

s = x p axs -k (ll7b)
T*m m k Tp

ax ax

Similarly, it can be proved that the transformation law for the components

To follow the same rules as given in (117).

Generally, we then have

2. •. * --x. Px p  l x q  ili
-12 p ax 1  x ax a x l2
T i )T. (118)
m 1m2 " "mq ax 1 x p a x ax q  Jl]2"''Jq

Metric Tensor:

Because of the special status of the metric components gij and gi

we consider them in detail. Looking from the point of view of the

definitions

-ij = ai i a,

we immediately conclude that they are symmetric in i and J. If base
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vectors are not brought into picture and the g i's are assumed to be

functions defining a metric in a Riemannian space then we can use the

formula

(ds)2  g i jdxidxi

to write

(ds) 2 = (gij + gj ) d x d x j + .2(g ) d x i d x j  (119)

2 (8 j i 2.)xd iij -gjidxx

By direct expansion, we can show that the last term in (119) is zero,

proving the symmetry of gi." Similarly gij is also symmetric.

The components gij are covariant, while gij are the contravariant

components of the metric tensor. Thus, the transformation laws for

them are

s mg(LI

ax ax

All the preceding transformation laws are linear. We therefore list

the following important conclusions regarding the nature of tensors.

(I) A tensor equation or expression has the property that it can

be obtained in any legitimate reference system, i.e., J 0. If it is
correct In any one reference system then it must remain correct in any

other legitimate reference system. The above property is due to the
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linearity of the transformation laws, since any component from the old

system is a linear function of the components from the new system.

(II) If all the tensor components vanish in any reference system

then they remain zero in any other system.

(III) Because of the linearity of transformation laws, a symmetric

tenser remains symmetric on coordinate transformation. Thus symmetry

is an absolute property.

§3.3. Algebraic Properties of Tensors.

1. The components of two tensors of the same order and structure

can be added and subtracted according to the usual arithmetical rules.

If A.. and B.. are the covariant components of the tensors A and t, then

on addition or subtraction we generate a new tensor C whose covariant

components are

C =A B (122)Aij i- 3J

2. The outer product of two tensors of any order or structure is

obtained by arithmetical multiplication to produce new tensors. For

example, let Aijk be a fourth order tensor, and let Bm be a third order
pq

tensor. Then the outer product is the new tensor

Cij km = AijkBm (123)
Zpq Z pq

which is a seventh order tensor, contravariant of order four and covariant

of order three.

Variance.
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3. The inner product of two tensors is obtained by equating one

index of the first with one index of opposite variance of the second,

and, then summing over this index. Thus in (123) if we set £ = m and

sum over m, we obtain

Ci j k = AijkBq (124)
pq m pq

The resulting tensor is only of the fifth order.

§4. Differentiation of Vectors and Tensors.

One begins to feel the power of the method of tensor analysis after

the differential aspects of tensors have been completed. In this connection

we first consider the partial derivatives of the base vectors.

From the definition of base vectors ait we first note the following

result.

k )

ax ax ax ax

= - (125)

for any values of i and k.

We now select any three indices, say i,j,k, and consider the following

three equations

ag
U -- a a )(126)

axk ax k
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= -- (a. • ) (127)

ax axi -3

axg ik 1(ai • k )  (128)

axi ax~ i -

Adding (127) and (128), subtracting (126) from it and using (125), we

get

3a.
-a a = [ij,k] 

(129)
ai k

where

[i~k 1ag1  a ag
[ij,k] =(i+ a-  - k")  (130)2 xj  ax i  axk

The quantities [ij,k] defined in (130) are called the Christoffel symbols of

the first kind. These quantities are symmetric in i and j but they are

not tensors.

Equation (129) implies

3ai
7 [ij,k]a k  (131)

x.

£
Taking the dot product both sides by a , we then obtain

D i  z x£

- - a =(132)
ax - ij

where
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rFi = gk£ [ij k] (133)

are called the Christoffel symbols of the second kind. These quantities

are also symmetric in the lower two indices i and J, but are not tensors.

Equation (132) implies

3a .i
-_= r ija (134)ax

j

Equation (134) expresses the first partial derivatives of the covariant

base vectors in terms of the derivatives of gij.

Having established the preceding definitions and results, we now

consider the partial derivatives of an arbitrary vector A.

Let A be an arbitrary vector, and we express it in terms of its

contravariant components Ai. Thus

Aia (135)
-- i

k
Differentiating with respect to x , we get

DA 3a
k k i + A  k

ax ax ax

On using (134) and adjusting the dummy indices, we get

A A )a
k  jk -i

We use a special notation for the terms in parentheses,
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A = + r k (136),k axk j

which is called the covariant derivative of the contravariant components

i
Ai . Thus

aA
- = Aa (137)

To find the covariant derivative of the covariant components A of
i

the vector A, we start differentia ing

A = Aai

so that

aA a~A i
i - a +Ai  - (138)

k k i kax ax 3

a a3
To obtain - we differentiate the relationx k '

axa i = 5
a a aj

yielding

aai aa.3ai i I * =0 (139)k-- -ak
ax ax

Using (134) in (139), we get

3a i

axk aj jk
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which implies

Daai
k _ - J  (140)ax k  k

Using (140) in (138), the derivative becomes

aA i
=A Ai,k (141)

axk

where

A FPkA (142)Ai, k =ax--- k A

is called the covariant derivative of the covariant components Ai .

i'

The comma notation will always imply the operation of covariant

differentiation. The name "covariant" for this type of differentiation

is due to the fact that the differentiated component gains one covariant

index with each application. For example, in (142), the covariance of

che components is now of the second order due to the ccvariant differentia-

tion. Similarly, A is a mixed tensor, contravariant of order one, and,k

covariant of order one due to differentiation.

Following the method described in §3.2, we can introduce a transforma-

tion from x to x in (136) and (142) to have

-i = a x 1 kA --- A (143),n --n 3xk j

and
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aX axn
., - Z-A. (144)

ax ax

where

-i Al -i-rA =- + r (145),n -n rn

aA.

A =- - A (146)
"~ax~

A bar on the quantities in (145) and (146) denotes values in the new coor-

-idinate system x . The transformation equations (143) and (144) prove that

A and A are tensors of the stated structures.
,k i,k

An important point to be noted is that on comparison of (136) with

(145) and of (142) with (146), there is found no change in the forms of

i -i
the covariant derivatives in changing the coordinates from x to x . Thus

there is no preference of one coordinate system over any other as far as

the covariant differentiation is concerned. Also in the case of rectangular

Cartesian coordinates, since the Christoffel symbols are zero, the covariant

differentiation reduces to partial differentiation. Because of these pro-

perties, the covariant differentiation is also called "absolute differentia-

tion."

In obtaining the partial derivatives of a tensor as an entity, we

again encounter the covariant derivatives of the components in which the

tensor has been expressed. Thus, for a second order tensor written in

contravariant components, we have

= Tijaiaj
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Thus

S aTiJ .. a aa.=T DT a + T 1 ( - aj ( a. __3i

axk axk ~a~+ -a+ a a k

Using (134) and adjusting the dummy indices, we get

-T T iJa.a (147)
axk  ,k-~-j

Similarly

aT iaJ (148)

k Tij,k a

= Ti  aa (149).j,0

= T* 1 ala. (150)
jk- ~i

where the covariant derivatives are

T xk + + - (151)
ik a k - kkT

;T i

T ij~ k "J+ kT~j -' FjTit (152)

ax

ij,k xk ik j jk (

i T. i .£ . .i

aT
T i  = + Fk T - F (154)

S,k k FT
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Ricci's Theorem: The covariant derivatives of the metric tensor gii,

g i, or 6 are identically zero.
J

This theorem can be proved by replacing T by g in (151) and (152)

and using the expression for the Christoffel symbols given in (133).

Thus

i*
0, ijk = 0 , = 0 (155)

and the metric coefficients behave like constants under covariant differ-

entiation. Because of this property, e.g.,

(giJT), = giJTn (156a)

From (155), we have

ag j k2
= g + rk(156b)

ax
axk =-ikg

§5. Christoffel Symbols: Their Properties and Transformation Laws.

The definitions of the Christoffel symbols of the first and second kinds

have already been given in (130) and (133) respectively. It must be restated

that these symbols are not the components of any tensor. The transformation

laws considered in this section will prove this assertion.

In taking the divergences of vectors and tensors, a contracted

Christoffel symbol of the form r i appears. To find its value, we use

equation (82b),
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g = gm

where G zm is the cofactor of gkm in the determinant g. Thus

kmag z
= G (157)axi axj

and since

G kgg (158)

we get

= ggim gm (159)ax l j x ji

Now in (133) setting P = i, and summing over i while using the property

that gij is symmetric, we get

r i 1 ik agik
ij 2 9g 3x

On using (159), we have

ri i (160a)
ij 2g ax j

= -Z(n/g) (160b)axi

§5.1. Transformation Laws for Christoffel Symbols.

i -i  i
Let x and x be twr, general coordinate systems. We assume that x
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and x are functionally related and that the Jacobian of the transforma-

tion is not zero. Recall from (120) and (121) that the metric components

transform as

S k x (161)gij ffi g£x i DO--

-ij kk ax 3 a(xJg 9 (162)
xk ix

g =g axk ax~

From (130) and (133), the Christoffel symbols of the first and second

-ikinds respectively for the coordinates x are

[ij,k] 1 ---- + . -k) (163)
ax ax

r. = - i--,k] (164)
rj g k

If we now use (161) in (163) and perform the indicated differentiations,

we get

[Zm,n] = [ij,k] +x gx xk x 2J (165)

g.-i.- i - (165)m
ax xa x ax ax

Inner multiplication by gnp (given in (162)), gives

ij axs a 3xx j ka a a kx m  
(166)

Equations (165) and (166) are the transformation laws for the Christoffel
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symbols. Because of the appearance of the second derivatives of the

coordinates on the right of eqs. (165) and (166), the symbols do not

transform like the components of any tensor. This proves that the

Christoffel symbols are not tensors.

A formula expressing the second derivatives of coordinates can be

obtained from (166). On taking the inner multiplication of (166) by

axr
- , we get

_2xr _ p axr  r Dxi axi
. .. r .r. - -in(167)

ax ax - 3Xa

§5.1.1. Formulae-, Cartesian to Curvilinear and Vice Versa.

All the preceding formulae are applicable for any space and for any

two general coordinate systems. In engineering applications, we usually

transform from a rectangular Cartesian to a curvilinear and vice versa.

We consider two cases.

i -i
(i) x are Cartesian and x curvilinear.

(ii) x are Cartesian and x curvilinear.

Case (i):

i i
If x are Cartesian, we denote x as decided earlier, by x.. For

this case

kkgkk g = kk

so that (168)

i
jk
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-i i,
For brevity of notation, we denote x = and also remove the over

ibar from the quantities in . Thus

gi. ax kak (sum on k) (169)

i i j a'a

gij (170)
axk axk

To find the partial derivatives of the curvilinear coordinates with

respect to the Cartesian, take the inner multiplication of (170) with
ax
r
- Thus

ax r*

ax g (171)
r

Recall, from (94) that

gg m j = M
gi = 1 (172)

From (167), the second partial derivatives are given by

a2 x axr = Fp  r (173)

n
Inner multiplication of (173) with -1 yields the formula for theax

r
Christoffel symbols in terms of the second derivatives of the Cartesian

with respect to the curvilinear coordinates

Fr r 2- 2s (174a)
ij ax s a&i a]
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3x a2xrt S S (sum on s and t) (174b)Et iEj

As an application of the preceding results in a two-dimensional plane

in which the Cartesian coordinates are x= x, Y, = y and the introduced

curvilinear coordinates are I= , 2 = n, we have the following formulae.

In all the formulae given below, a variable subscript denotes a partial

derivative.

S=x2 + Y ' g1 2 = x x + Y Y g2 2  X Y2
T) T

g1 1 = 2 + C2 , g 12 = n + Ey1 , g2 2 = i2 + 112 (175)

g1 1 = g22 12  2 ,1g22 = gl1
g g g

where

g gllg 2 2 - (g1 2
2 

= (x y - x y)2 (176 a)

(C - Tx y)-2 (176b)x y x y

Ex y n/ , = -x/ ,g ' x =-Y /g , y x//gg (177)

= g11  g 1  12.

[g2 2  & + g1 2 " n - 2g (178a)

= (yx - x y&)/Vg (178b)

ag22  ag22  ag 1 2
22 [gn 1 -- + g1 2 (---- - 2 -- )]/2g (179a)
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(x yan -y x nn)/vrg (179b)

[ g1 2  3g 2 2  ag 2 2

22= 82 2 ( - g1 2  a ]/2g (i80a)

= (yx - x n )/ - (180b)

2 [g ag 1 2  aglI ag11
11 1i - - g12 3 1/2g (181a)

= (X ;YE - xU)/V'9 (181b)

rP2 =rl

12 21

- (g 2 2 -n g 1 2  /2---)/g (182a)

= 0Ynnx -xy g (182b)

Fr2 =r
2

12 21

(gll 22 1gll

k 1  912 - -an )/2g (183a)

= (x y - yx wg (183b)

Also

i + 2 (184a)
II 12 2g 3

I'' r 1& -(184b)
12 2 2 ?g r
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Case (ii):
-ii

If we treat x as the Cartesian coordinates, then we denote them as

x.. Also writing x -= in (167) we get

, r 3Ce, 3x(185)

On using (171), we can write (185) as

2=r r jq 3Ei ax

xj ax i q (186a)

or

ax axr iP jq X m (8b

- -rijg q (186b)

Equation (186b) expresses the second partial derivatives of general coor-

dinates in terms of the first partial derivatives of the Cartesian with

respect to the general coordinates. Equation (186a) is suitable for

obtaining the Laplacian of the general coordinates. For, on contracting

the indices Z and m, viz., setting i = m and performing the sum on m, we

get

[.r gjq~i

(187)

-gj Yi r
ij

where
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V 3x x (sum on m).

m m

Thus in two dimensions, writing x1 
= X, X2 

= y, Fi 1 1, 2 = r we have

V = (2g Ti - l g 1

12 12 - 911 22 - g2 2 11)/g (188)

v2 = (2g r 2  
- glP 2  - g 2  )/g (189)

12 12 11ll22 22 11

where

2 2 a2

V _7 +-7
ax ay

A second order differential operator defined as

32 32 3

D 2 - 2g12 - + gll a (190)

and the use of eqs. (173)-(181) yields another form of the Laplacians,

V2& = (x Dy - y Dx)/g 3/2 (191)

n = (yCDx - xtDy)/g3/2 (192)

§6. Gradient, Divergence, Curl, and Laplacian

(i) Scalars:

There are two types of scalar quantities. One is called an absolute

scalar or an invariant, while the other is called a scalar density.

i .
Any function of the coordinates x is called an absolute scalar if

I -ion coordinate transformation from x to x the value of * does not change.

Thus
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(x 1 ,x 2 ,x 3 ) f ( - 1 ,x- 2 ,x 3)  (193)

There are scalars which on coordinate transformation do not trans-

form like (193). As an example the function g, viz.,

g = det(gij)

is not an absolute scalar. On coordinate transformation

g det(gij)

On actual substitution of (161) in the above determinant and by expansion,

we obtain

g = (j)2g (194)

Similarly

g (j) 2 -g (195)

where

-x 
ax

J = det(-x) , = det(--) (196)

Thus g or vg is not an absolute scalar, its value in some other coordinate

system is given by J-1gj.

Multiplying the absolute scalars, vectors, or tensors, by Vg we get

the corresponding densities.

In §1.6 we have already defined the operator V or grad as
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i

grad V = a - -

ax

If 4 is an absolute scalar, then grad 4 is a vector given as

grad 4 = a
~ ax

so that the covariant components of grad 4 are

= t = 4, (98
(grad 0) x (198)

Using the method of raising an index (cf. §3), the contravariant com-

ponents of grad 4 are

(grad 0) = g (199)

(ii) Vectors:

The divergence of a vector v was defined in (44) as

i Dv l

div,- a _

On using (137), we get

ji
div v= v (a a.)

, i i jI

=V 1 =i, (200)

From (136)
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vi ri vj
V,i x ij

so that on using (160b),

div v - v) (201)

which is a scalar. Another form is obtained by using (141), which gives

i k
div v = a * a

- gA ik (202)

The gradient of a vector v appears quite often in fluid and solid

mechanics. In §1.6.1, we decided to choose the definition of grad v as

av i

grad = i- a (203)
ax1 -

and that of its conjugate as

(gra'4 v) (204)

v
Using the expressions for -- from §4 we can write it in the following

axi
forms

i k
grad v = v k , mixed components. (205a)

ia k
= gijv a , covariant components. (205b)

i k
via a , covariant components. (205c)
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kj i
v vkiaj contravariant components. (205d)

In the same manner (grad v)* can be written. For example, one useful

representation is

(grad v)* =v (206)

In mechanics, we sometimes need the inner products of grad v. Using

the definition (29), we easily obtain

i k

(grad v) : (grad v) = V,kV i (207)

kn i m(grad v) (grad v)* =g gim (208)

where both are scalars.

The curl of a vector v is defined in the usual way.

curl v = aj x

V k,j (a j X ak

Using (90b), we have

1 ijk

curl v = -- e k3 a i  (209)

Thus the contravariant components of curl v are given by

(curl v)i = 1) (210)

56 x x k
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where i, j, k are in the cyclic permutations of 1, 2, 3, in this

order.

(iii) Tensors:

The divergence of a tensor of second order has been defined as

(cf. eq. (52))

- aT k
div T a kax

k

Using the derivatives given in (147)-(149) we obtain

div T = Tika (2 11a)

ijkT ka (211b)

= gjkTi a (211c)
•j,k-i

Thus div T is a vector whose contravariant components are given by (211a,

c) and the covariant components are given by (211b). The operation of

divergence thus reduces the order of the tensor by one.

For a divergence-free tensor

T =k 0 (212a)
,k

or,

g jkT ij,k 0 (212b)
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or

9jk Ti 0 (212c)
.j k

If a tensor is such that

T i  =0 (212d).j,i

then it is called a covariant divergence-free tensor.

(iv) Laplacian of a scalar:

The Laplacian of an absolute scalar 4 can now be obtained by first

using the formula for the covariant derivative of covariant components

of a vector, viz., (142), to have

(,) = 2r L (213)( ,i ) j x~x j ij x r

' axiax3  1 axt

r =r
Since F.. , hence

13 ji'

that is, the covariant differentiation of absolute scalars is commutative.

Having obtained the covariant derivative, we now obtain the Laplacian I
using (202),

V
2
4 = div(grad 4) = gi ( a.x _ -. a r ) (214)

mIt is easy to verify that if 4 is a curvilinear coordinate, x , then

V2Xm - gij rm
ij
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which was obtained earlier by another method (cf. (187)). Similarly,

if p is a Cartesian coordinate, x , then

•. zx x
j n. r n

or

a2x ax
1] n + n V xg 1 + r  (215)

ax ax ax

As an example, consider the Cartesian coordinates xI = x, = y

in a plane, and let x1 = , x2 = q be the curvilinear coordinates. Then

introducing the operator D defined in (190), the equations for x and y

as dependent variables are

Dx = -g(x V2t + x V2 n)

(216)

Dy = -g(y v2  + y

Equations (216) have been used in Ref. [29] to compute the coordinates

for arbitrary shaped two-dimensional bodies.

§7. Miscellaneous Derivations.

In this section we consider a few derivations which are used in the

study of geometry and mechanics.

(i) Intrinsic derivative:

k kt
Let x = x (t) be the parametric equations of a space curve with t

as a parameter. A vector function u of position will then also be a
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function of t on this curve, viz.,

u - u(x k(t))

The intrinsic derivative, also called the total or substantive

derivative, of u with respect to t is defined as L . Writing
cit

iu~ua i

we get

du dui i da i
dt dt -i cit
d- i - a --

dui  i 'i dxjd- a:i F u jxi  dtI

= ti u r i dxj)ai
cTt- + rj dt -i

Su

The quantity

Au_ du' i __j (217)
6t dt rJ dt
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is called the intrinsic derivative. We can also write (217) as

i dxj

u d- (218)

As an example, in fluid mechanics, the velocity vector u is defined

as

dr
~ t

where t is the absolute time. Since dr = a dxi so that

dxi
ti dt

i
= ai

u

i dxi

Thus u - dt-are the contravariant components of u. The components u

can also be explicit functions of t beside being implicit, but ai are only

implicit functions of t. Thus
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du dui idai

dt dta d-t

Du + uirruaa73 t + Uja j- -r

- + u uj)a (219)

which is the well known substantive derivative defining the acceleration

vector.

The intrinsic derivative of a tensor of any structure can be found

by using the method followed in obtaining (218). Thus for a tensor T,

dT -6  "U s a ..a a ..1 p

dt 6t r1r2 -. . r ~u1  -u - -p s i

Higher order intrinsic derivatives can be obtained in a straight

forward manner. Thus

62ui 6 i dxj  dxk

6t2 = 6t(  ) = (ui -- ,k dt'

Intrinsic differentiation in general is not commutative. Other uses

of intrinsic derivative are in the definitions of a parallel field of

vectors and of the geodesic curves in space.
i i~t

A field of vectors A along a curve x = x (t) and in any space are

called parallel if at all points of this curve where

AA(xi ()
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we have

dAd- 0 (220a)

Thus in an Euclidean space, the meaning of eq. (220a) is that the

components of A referred to the rectangular Cartesian coordinates are

constants.

For arbitrary coordinates and in any space, a field of vectors is

called parallel when

dA 6 Ai

dt 6t 0

Thus, the parallel field of vectors satisfy the equation

6Ai i dxj

+-- +Ar -=0 (220b)6t dt rj dt

Equation (220b) forms a system of N equations in an N-dimensional space

and can be solved by specifying A at an initial point t = to, [15].

The geodesics or the geodesic curves of a space are the curves along

which the distance between two points is minimal. Let s be the arc length

along a curve, then we define the unit tangent vector field t(s) whose

contravariant components are given by

dxit(s) = ai

The field t(s) is said to be a tangent vector field on a geodesic

when
dt

0 (221a)
as
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Using again the definition (217), we obtain the equations for geodesics

as

d2xi i drdx3r = 0(221b)

ds2 rj ds ds

Thus the geodesics are the solution of the second order equations (221b).

(ii) Magnitude of a vector:

The magnitude of a vector u is a scalar. This magnitude is obtained

by taking the scalar product of u with itself. Thus

(u) 2 _ u . u

(. a.)uiuJ

= gijui (222a)

Also

(U)2 = giju uj (222b)

- u u. (222c)

In the same manner, the magnitude of grad * denoted as Igrad 01 is

given by

gik afiL

Igrad I2 
= g (223)ax i 3xj

In two dimensions, writing x i = 4, x 2 = n, we have
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Igrad 012 = [g2 2(0 )2 - 2g120r + gl(0rn)2]/g (224)

(iii) Angle between two vectors:

The angle e between the two vectors

uia

and

v = via.

is given by

cos = ijui/ uk (225)

The two vectors are orthogonal if

i ii
The angle between any two coordinate curves at a point is given by the

base vectors corresponding to these curves. Thus the angle 0 between
ij

the curves x and xiis given by

,Cos 6 ij = (a, • a J) / ViiTI ij

= gi/gi-igjj (226)

where, since i and j are fixed numbers, there is no implicit summation

on repeated indices. If xi and xi are orthogonal, then g ij 0 for i # J.
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(iv) Cross product of vectors:

For the cross product of two vectors u and v, the use of eqs. (90)

yields the result

xv= Vge ijkuJvkai (227a)

1-e uva (227b)
j k-i

giving the covariant and contravariant components respectively.

(v) Physical components of a vector:

In a three-dimensional space if all the coordinates are orthogonal,

then as noted in (226)

gij = 0 for i # j

and the non-zero terms are gill g2 2 ' g3 3 " It is customary to use the

notation

h 2 g1 = ll 
g

h 2 g (228)2 922 -22

g
h 2 g 1

3 533 33

and

g g1 1g2 2g33 = (hIh 2h3 )
2  (229)
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The covariant and the contravariant components of a vector y

referred to the orthogonal coordinates are then related as

Vl = h2  , v = h2v 2
, v = h2v (230)

1 2 2 3 3 3(20

The physical components of the vector v are the orthogonal projec-

tions of the vector on the coordinate axes. Denoting these components

by Vi (subscript i is just a label), we get

V1 = h v = v /h 1

V2 = hv
2 = v2/h 2  (231)

V3 = h3v3 = v 3 /h 3

The magnitude of the velocity vector v is then simply

JY12 = V 12 + V22 + V3 2
(232)

v V 1Vi + v 2v 2 + v 3v 3

(vi) Arc lengths, elements of area and volume:

In any coordinate system (orthogonal or non-orthogonal) the arc

lengths are easily obtained by the metric equation

(ds)2 = g ijdxidxJ

Thus for i, J, and k as fixed numbers, we have
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(ds)x = const. = y dxi (no summation) (233)

xk = const.

is an arc length along the x curve.

Similarly denoting the element of area on which the curve x =

const. as doi, we have

doI = [a2dx
2 x a 3 dx 3 I

= [g 2 2 g3 3 - (g23 )2]1/
2dx2dx3 (234a)

do2 = 143dx
3 x aldx1 [

= [gg33 - (g13 )2]'/
2 dxldx3 (234b)

do 3 = Jaldx l x a2dx
2i

= [glg2 - (g12 )2]/2dxldx2 (234c)

The element of volume is

dV = a (a2 x a3)dxldx
2dx 3

= Vg dxldx 2dx 3  (235)

§8. The Curvature Tensor and Its Implications.

Questions regarding the nature of spaces have been raised and dis-

cussed, mostly by philosophers, at different stages of human civilization.
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A definitive philosophic work on this subject was published by Immanuel

Kant in the "Critique of Pure Reason" in 1787. Despite a work of such

brilliance, the description of space remained shrouded in mystery and

abstract formalisms. Scientific answers to the questions regarding

space started emerging after the works of Gauss and Riemann in the first

half of the nineteenth century. In this section we shall try to define

a space and its structure through analytic constructions as simply as

possible. The material of this section supplements the discussions of

§2.

After gaining a working knowledge of basic tensor rules and par-

ticularly after having the metric equation (74) at our disposal, we now

pose the following simple problem. "Is it possible to devise a coor-

dinate system x1 = , x2 = n in a two-dimensional plane such that the

element of length between two infinitesimally close points be given by

the metric

(ds)2 -(d)
2 + (cos 2C)(dr))2  ?" (236)

In essence, the problem is to find whether in a two-dimensional plane

can we have gll = 1 and g22 
= cos 2 ?

The answer to the above question is that we can never introduce

the above metric in a plane. In fact, as we shall see later, this

metric suits the surface of a sphere which is a curved two-dimensional

space. Recall that in a two-dimensional plane we can introduce Cartesian,

and plenty of orthogonal, or non-orthogonal curvilinear coordinate systems.

Each chosen coordinate system yields a specific set of the functions g j"
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For example in a plane:

911= 1 , g12 = 0 , g2 2 = 1 , for Cartesian coordinates.

9l= i , g12 = 0 , g 2 2 = (C)2 for polar coordinates.

g1 1 = 1 , g12 = -2cos a , g22 = 1 , for oblique rectilinear

coordinates with a as the included angle between the coordinates. We

can go on adding to the above list, but the gi.'s of (236) are forbidden.

These considerations suggest that there must be a condition or a set of

conditions on the g. s which must be satisfied in each specific space.
iJ

To get started on this problem, we proceed as follows.

Let A be an arbitrary vector and xi a coordinate system in our

chosen space whose structure we wish to study. We have the result from

(141) that the partial derivatives of the entity A can be expressed in

terms of the covariant derivatives as

aA
-=A. a

axn J,n-

m

Differentiating partially once more with respect to x and using (140),

we obtain

a 2 A aA.
-__ = (3,n_ Fp a j

axmaxn x m mj p,n-

( a + P ' (237)
j,n ,m. mn j,9 a
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where a comma, as before, denotes covariant differentiation.

Proceeding again from

3A a

we obtain

32Aj
2A -=(Aj) a + FA a (238)axn x m  ,m ,n mn j,0~(28

Subtracting (238) from (237), we get

32A D2
2A - 2A = R Aa j  (239)xm xn xn xm "Jn -

ax Max n ax nax M -

where

a k a z kis z is(20Ri. =- - F -8F* +r r%  -r F£ F (240)
• jnm axn Fjm xm 3n ns jm ms j n

It is a direct algebraic problem to show, using eq. (152), that

(A ) -(A ) A (241)

The structure of the quantities R .  shows that they are the

components of a fourth order tensor, covariant of order three and contra-

variant of order one. This tensor is known as the Riemann-Christoffel

itensor. It is formed of Fjk and their first partial derivatives. In

turn we may state that the Riemann-Christoffel tensor is formed purely

of the metric coefficients and their first and second partial derivatives.
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From (241) we conclude that the covariant differentiation in a

space is commutative provided that

Rz. = 0 (242)

for all values of its indices and for all coordinate systems introduced

in the chosen space.

Suppose in the chosen space it is possible for us to introduce a

set of rectangular Cartesian coordinates on a global scale. The metric

tensor component , are then the Kronecker deltas 6.. whose values are

either one or zero. Thus their partial derivatives and so also all the

i
Christoffel symbols Fik are identically zero. The vanishing of all the

Christoffel symbols makes (240) zero and so eq. (242) is satisfied.

The vanishing of a tensor (hpre R Z ) in one coordinate system means.jnm

that all its components should remain zero in any other coordinate

system introduced in the same space. (Refer to the three properties of

a tensor expressions in §3.2; listed after eq. (121)). It must be noted

that when the coordinates are not rectangular Cartesian then all the gi

i
and also the F are functions of the coordinates. Nevertheless, eq.

jk

(242) will still remain valid. Spaces in which eq. (242) remains valid

are callea Euclidean. Such spaces are also called flat because as will

be seen shortly, the tensor R£.  determines the curvature of the curved

space. Spaces for which eq. (242) is not satisfied are called Riemannian

or non-Euclidean.

It is now obvious why pure reasoning fails to provide a classifica-

tion of spaces. The idea of a curved space is implicit not only in the
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values of the metric gij but also in their distributions (derivatives).

Admittedly, the whole burden of our results depends on one axiom, viz.,

the axiom of the Riemannian metric, eq. (74). However, various physical

experiences such as Einstein's theory of gravitation, and the consistency

of the derived results forces one to accept the validity of the axiom

of Riemann.

§8.1. Algebra of the Curvature Tensor.

From (240) it is obvious that

R =-R. (243a)*jmn

R. + R. + R. = 0 (243b)• 3 -nmj *mjn

and

R 0 (243c)• Zmn

A fourth order tensor is now formed by contracting the upper index

as

R. =g R9  (244)
rjnp r. jnp

The tensor Rrjnp is called the covariant Riemann curvature tensor. It

can be represented in the following three alternative forms, [11].

a . a £ 9. agr.
R - [g r - - [g r knI k-
rjnp xn r. jp rin jp xn

in gp + r9.ns jp grk ps in (245)
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3 r 9[nr]+ . £
R = np n Jjpr] - -LInr] + r nrpX) - fp [rn,£] (246)r anp axn axp in

1 a2gr + 32g 2grn 2
rjnp 2 axjaxn --r-p axig ax 3 ran

+ g tS([jn,s][rp,t] - [jp,s][rn,t]) (247)

ik

kinds respectively as defined in (130) and (133).

From (247) it is obvious that

Rrjnp= -Rjrnp (248a)

R. = -R . (248b)rj np rj pn

R . = R (248c)rjfnp nprj

and

R . + R + R = 0 (248d)
rjnp rnpj rpjn

so that

Rjrnp + Rjprn + Rjnpr 0 (248e)

From (248) we also note that

R = 0 if r =j or, n =p (249)
7jnp
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Thus apart from sign, the only non-vanishing components are of the form

Rrjrj ' Rrjrp , Rrjnp (250)

where r, j, n and p are distinct from one another. The total number of

distinct components for a space of dimension N are

12-1-2(N2-I

Thus the curvature tensor has only one component in two-dimensional

space, six in a three-dimensional space, twenty in a four-dimensional

space, and so on. It can be seen immediately that in a two-dimensional

space, the component is R1 21 2 , while in a three-dimensional space the

components are

R1212 , R1313 , R23 23, R1 2 1 3 , R1 2 32 , 13 2 3  (251)

(Refer to Part III, § 2 for an expanded form of the equations for a

three-dimensional space.)

It should be noted that for a flat space

R =0 (252)rj np

for all values of the indices r, j, n and p.

§8.2. The Possibility of Local Cartesian Coordinates in a Riemannian Space.

We are now in a position to investigate further the curved nature of

Riemannian spaces. In this section we will show that in a Riemannian

space it is possible to introduce a coordinate transformation in which
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all the metric coefficients are constants and all the Christoffel

symbols are zero locally, (cf. §2).

Let xj be a curvilinear coordinate system in a curved space, viz.,

not all the components of Rijkm are zero. We now introduce a coordinate

transformation from x to x at a fixed point of the space denoted by

subscript 0, as

Xi - x0 + )0r- Ix x - x (253)

Thus

- x j = P + (r )0 (xr _ xr  (254)
a p pr00

and

6J = ax , + (rj )0(Xr )-r x p  (255)
m ax pr 00-M

Differentiating (255) with respect to x , we get

0 a2xJ + J axr axP + ( )0 r r) a2xPo- --r_ + prO o t -m prOax
ax ax a r xz a7x P00 zaM

Thus

~,j

J r 6 6P J (256)(--m)0 = -(pr) 0  Z -kFm)0

i -i
Evaluating (166) at x0, i.e., x -+ Xo, and using (256), we get

(jl;) (rS (ri 6 m))j0 X - km0 j (257)
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This proves that the Christoffel symbols at the point x0 in the new

coordinates are zero.

Now using (161), we find that

(gij)0 = (gij) 0  (258)

-k
Further differentiating (161) with respect to x and then using the

expression for the derivative of giJ from (156b), we get

ig.10 = 0 (259)

The properties (257) and (259) are peculiar only to Cartesian coordinates;

hence the stated result. It must be restated that the preceding results,

both for gij and rk, are applicable only locally and not on a global

scale. These results also show that the basic nature of a space cannot

i i
be guessed simply by gi. and rk but by the derivatives of ri

The coordinate system x discussed above is also called a geodesic

polar coordinate system.

§8.3. Ricci's Tensor.

A contraction of Z and m in the tensor R yields a tensor of the

second order which is called Ricci's tensor. Ricci's tensor of opposite

sign will be obtained if Z and n are contracted. Thus Ricci's tensor is

R R g S R (260)
jn Jnk Rsjnt

In expanded form it can be represented in the following two forms:
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R jn= a r +r r. -r --- (Yn~g) (261)
axan ax a. iInax . in ns ji in s

From (240)

Rjn .jn2.

a rk - a r k s x s (262)

axn Fj£ axt jn ns j s 262jn

From (261) it is obvious that the tensor Rjn is symmetric,

R n R . (263)i n n3

since

r = ri

jk kj

The tensor representation (262) is of much importance in the Einstein

theory of relativity because it is symmetric and has as many components

as the metric tensor gij" A scalar R can be obtained by the inner

multiplication of g n and R.n, viz.,

R = gjnRjn (264)

and is called the curvature invariant.

§8.4. Bianchi's Identity.

If we differentiate a second order tensor

Tijai a
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and find the partial derivatives

a~2.

(T ik m',n - (T k,n',m inm1 kk *knm ik 25

We now take the covariant derivative of eq. (241) both sides and using

the notation

Tij A1,j

we write three equations by cyclic permutation as

(T. - (T. =-R. A - R2. T (266a)
jm,n ,r jn,m ,r *jnm,r Z. *rn Zr

(T. ) (T R A - R T (6b
jr,m ,n jm,r ,n *jmr,n Z jmr Zn (6b

(T. A - z A T26c
(jn,r), ,m ( jr,n ,m *Jrn,m £z jrn ft(26c

Adding eqs. (266), using (265) and (243b), we get

R Rx + R k ='0 (267)*jnp,r Jpr,n *Jrn,p

This is the first form of the Bianchi's identity. The second form can

be obtained by using (244) and using the fact that the metric coefficients

g ii behave like constants under covariant differentiation. This form is
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R + R +R. =0 (268)mjnp,r mjpr,n mjrn,p

§8.4.1. A Divergence-Free Tensor.

The use of Ricci's tensor and the Bianchi's identity produces an

important tensor. Inner multiplication of (268) with gmpgin and use

of (248) and (260) yields

(gJnRjn),r - (gnRjr ),n- (gmPR mr)p =0 (269)

The first term under covariant differentiation in (269) is the curvature

invariant R defined in (264), so that

R - 2(gjnRR. 0 (270)

If we now introduce a mixed tensor

G n = gjnjR i n R  (271)
-r jr 2r

then eq. (270) implies that

Gn =0 (272)
-rn

That is, the covariant divergence of the mixed tensor is zero.

In place of the mixed tensor, we can have a contravariant symmetric

tensor by first writing

Rjr g jp grq
Rp q

80 -V- - -



Thus (270) becomes

R -2g R nq=Q,r rq, n

Inner multiplication by gr, and because of symmetry of R we get

E = 0 (273)

where

E giJR (274)

Equations (272) and (273) state that the tensor components defined in

(271) and (274) are divergence-free. The tensor Eij is symmetric and

is called the "energy-momentum tensor." Both eqs. (272) and (273) state

a conservation law of much importance in physics. Note that the covariant

components of the energy-momentum tensor can be obtained from (274)

by the usual rule of lowering an index. Thus

211Ei. Rii - giiR .(275)

§9. The Geometry of the Event-Space.

An event-space is a coordinate space in which the time variable is

also taken as one of the coordinates so as to have a space-time continuum

in which physical events occur. All the tensor theoretic results obtained

so far are obviously applicable in this space.

The geometry of the event-space has all along been important to the

theory of relativity. However, it is the opinion of this author that all
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mechanics, whether relativistic or non-relativistic, should be treated

at least in the start as a unified subject . The rigid classifications

of relativistic and non-relativistic mechanics deprives one from a

correct understanding of the mechanics and of the geometry associated

with it. In this section we first briefly state the basic postulates

of mechanics and go on to explore some of the consequences from a

geometrical standpoint.

An inertial frame of reference is precisely defined by Newton's

first law of motion. However, we can rephrase it as: An inertial

frame is a coordinate frame with respect to which bodies, under the

absence of external forces, move with zero acceleration.

The two basic postulates of mechanics are:

(I) All physical laws are form-invariant when transformed between

inertial frames.

(II) Light travels isotropically and with a constant finite

speed c(= 2.998 x 1010 cm/sec) in all inertial frames.

In this section we shall use the Greek suffixes for index values

ranging from 1 to 4 and Latin index values from 1 to 3.

Let there be two inertial frames in which the coordinates are denoted

a -aas x , x . The first three coordinates are the rectangular Cartesian

and the fourth is the time. Thus, for example

x= x , X 2 = y , X3 = z , x4 = t

tThe inspiration for the work of this section is due to a paper by

G. C. McVittie [ 30].
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Let the second inertial frame move along x I with a constant velocity

V with respect to the first. A general coordinate transformation between

CL -ai
x and x can be written as four equations

x -  (xl,x2,x3 ,x4) (276)

If now the two postulates, and specifically of the isotropic propagation

and constancy of light, are used then as shown by Tolman [311 the only

possible transformation forms for in (276) are

xi = k(xl - Vx4) (277a)

2 = x2  (277b)

-3 = x 3  
(277c)

X Vx
I

x4 k(x 4  -- ) (277d)

where
V
2 

-1/2
k = (1 --- V)/

c

The mapping (277) is called the Lorentz transformation. It is immediately

seen from (277), that when V is very small in comparison to c, then k - 1

and

x1 x I - Vx4  (278a)

2 =x 2  (278b)

= 3  
(278c)
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X4 = x4  (278d)

which is called a Newtonian or Galilean transformation.

As a check on the form-invariancy of a physical law, we can take

Newton's second law of motion for a body of constant mass m0 and acted

i
upon by a force system F

Fi  dxd

F=-(m d , i = 1,2,3 (279)
dx dx

It can be easily verified that under the transformation (278) the law

takes the form

-i d dF =j-(m0 -- ),i= 1,2,3 (280)dx dx

so that the form is preserved under a Galilean transformation. If we

repeat the same procedure using the Lorentz transformation then we find

that (279) cannot be transformed to the form (280).

We now consider the invariant nature of the element of length for

an Euclidean four-dimensional space. Recall from eq. (71) that the

element of length in E4 will be

(ds)2 = 6 adxadxB

This metric does not remain invariant either for the transformation (277)

or (278). Thus the Euclidean metric is completely unsuitable for de-

scribing a physical phenomena in an event space. For the Lorentz trans-

formation, it can be shown that the metric
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(ds) 2 = (cdx4) 2 - (dxl) 2 - (dx 2 ) 2 - (dx 3 ) 2  (281)

transforms to

(ds) 2 - (cdx4 )2 - (dX 1 )2 - (dx 2 )2 - (dx 3 )2  (282)

so that the metric (281) is form-invariant under Lorentz transformation.

We can write (281) in the form of eq. (74),

(ds)
2 = g dx dxa

so that

-, g22 -1, g33 - 44

g = 0 if a

Thus, for this metric

g =_c
2

and consequently in all the tensor formulae g must be replaced by -g.

To complete the consequences of (281), we first write it in the

form

(d) 2 = (dss2

c

= (dx4) 2 
-1 [(dl)2 + (dx 2 )2 + (dx 3 )2 ] (284)

C

It must be realized that the element ds in (281) is not the distance

between two closely spaced points. Thus do is an interval which tends to
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an interval of time only when c is considered to be infinite rather than

finite as stated in the second postulate of mechanics.

Now writing

(dxl2 ,d22 dx32
2 dx 2 + (.x) 2  (u)2

dx dx dx

=U
2

in (284) to have

dx4  u2 -1/2
dc= (1 _ --2) (285)

Note that in the Newtonian mechanics c - wand dx4 = do, and this is all

we get out of the metric (284).

A four dimensional Minkowski momentum vector is now defined by the

components

dx a
-0 -a , a = 1,2,3,4 (286)

where m 0 is the mass of the body when at rest, viz. u 0. The fourth

component of (286) is defined as the mass m of the body in motion. That

is

dx
4

0 do

which on using (285) gives the well known relativistic mass

u
2
)-1/2

M = m0(l ---7 / (287)o c
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The other three components are

dx i  dx dx4

dxi

- m-- i = 1,2,3 (288)
dx

4

which are the Newtonian momentum components.

The four-dimensional Minkowski force vector has components F
a
,

d 
2Fa = 0 da2 [

d (M dx

= U2 -1/2 d dx (289)

Thus

1 u2 -1/2 d dx' (290Fi  (1 -)( (290)

c dx dx4 "

and

F4 u2 -1/2 dmFq (I _ 2)-I/dx4
d- -

= (I  u2 -1/2 dE (291)

c c dx4

where from (287)
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E mc2 
=m C2 + m 2 + **- (292)

0 2 0

This short discussion on the fundamentals of the special theory

establishes the connection between the relativistic and non-relativistic

mechanics and more importantly brings out the structure of the metric

needed to describe a space-time continuum.

In the case of general relativity, Einstein proposed the principle

of covariance which states that the physical laws under a general trans-

formation of coordinates are form-invariant. This principle thus

sweeps away the privileged position of inertial frames as embodied in

the two principles of mechanics. For the description of general rela-

tivity theory, the Riemannian metric, eq. (74), is used in its most

general form with the metric coefficients g.j as related to the di'stribu-

tion of matter. For details refer to [7 ], [31], etc.

§9.1. Newtonian Mechanics Using the Principles of Special Relativity.

Newtonian mechanics with reference to an inertial frame of reference

is described by the three spatial Cartesian coordinates x i = x, x2 = y9

x 3 = z at each absolute instant of time x 4 = t. Thus time is not affected

by the motion and remains the same for all coordinate systems. In

essence time is not a coordinate any more but is a parameter which de-

scribes the transformation of a three-dimensional Euclidean space into

itself with the passage of time. The geometry of this event-space is

then simply defined by an Euclidean E3 metric in either the Cartesian

or any general three-dimensional coordinate system with t or x 4 as a

parameter.
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If we attempt to describe the motion of a mass point as a collection

of four numbers (xl,x 2 ,x3,x4) in a four-dimensional manifold then we

have to use the metric of the special relativity given in (284), with

the option of performing a general coordinate transformation from the

Cartesian to curvilinear while keeping x4 the same, as described by

McVittie [301.

Let us introduce a transformation of spatial coordinates to a

curvilinear system & as

x r ( ) , r = 1,2,3; a = 1,2,3,4

(293)
x4 = c4

Thus

r adxr = x dE (294a)

dx4 = dE (294b)

Writing (284) in the form

(do) 2 = (dx 4 ) 2 - _6 dx dx j  (295)
c 2  i(

and using (294), we obtain

(do)2 - gad Od (296)

where

gaa 6 64604 - 1 aa (297a)
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and

6 axI ax j

Y44  1JD 4 4

p 4 ax ax (297b)

axI axj

Ypq = Yqp = 6 j a& q

It must be recalled that the Greek indices range from 1 to 4, while the

Latin indices range from 1 to 3. Obviously, as defined in (297b), the

metric (296) has symmetric coefficients, viz.,

Let

g =det(g ) , A0 =det(y 8

and (298)

11 + 22lm312 - Ylly2  - Y22Y3- Y33Y12

then

g + (299a)6 
8

and
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0 (299b)

In Newtonian mechanics we deal with velocities which are much

smaller than c. Thus xr (&) should be such that y V do not contain a

factor of c2 . Hence g44 is of the order of one, while the remaining

g are of the order of 2

Let v be a four component velocity vector, then according to the

special theory of relativity its c( :ravariant components are

a dxa (u)2 -1/2 dxa
U do dX4

For u << c, neglecting terms of order -- , we get
c

a dxa
u -= x (300)

dx4

Thus, for Newtonian mechanics

i4i dxt

u , u , i = 1,2,3 (301)dx4

In the transformed coordinates defined by

i ia
x = x (i

we have the components as

v -1 ,v -A i  (302)

d
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The divergence of v in special relativity is, (eq. (201)),

div v I (V-g v' )  (303)

Using (299b) and neglecting terms of order -- , we get
c

div v = L(/K v') (304)

with v4 = .

From eq. (211a) the divergence of a contravariant tensor in special

relativity (four space) will be

-(flTPV)(305)
,V f aV OV

1

Again using (299b) and neglecting terms of order -i , we get
C2

T 'V -- (1 Va ) + FG T (306)

§9.1.1. Application to the Navier-Stokes Equations.

As an application of the preceding approximations of the special

relativity to the Newtonian mechanics, we consider the transformation

of the complete r Navier-Stokes system of equations to time dependent

coordinates+.

The Navier-Stokes system of equations for a viscous compressible

fluid in the invariant vector form is

tMcVittie [30] has considered only the inviscid equations.

fA derivation without using the special relativity has been obtained by

the present author, [32].
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ap-- + div(pv) 0 (307)

at

at (pv) + div T 0 (308)

where p is the density, T is the stress tensor, and the div operator is

the spatial three-dimensional divergence.

We now define a four-dimensional energy-momentum tensor

Ta = pv°avt + T (309)

such that

V=

T = p

(310)
Ti4 = 4i i

T T

where i and j vary from 1 to 3. Using (304) and (306) we can write both

(307) and (308) as a single equation

T = 0 (311)

As before, a comma in (311) denotes covariant differentiation; a = 1, 2, 3

correspond to the three equations of motion (308) and a = 4 corresponds to

the equation of continuity (307).

Earlier, in §8.4.1 the subject of divergence-free tensors was discussed
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and an equation exactly similar to (311) was obtained for curved geo-

metries, eq. (273). These similarities tell us a lot about the connec-

tion of geometry with mechanics and the physical laws.

9
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Part II

The Geometry of Curves and Surfaces

§1. Theory of Curves

In this section we shall consider only those parts of the theory

of curves in space which are needed in the theory of surface. All our

considerations will be confined to an Euclidean E 3 in which the space

curves in parametric form are defined by

r = r(t) (i)

where t is a parameter which takes values in a certain interval a < t < b.

Figure 4.

It is assumed that the real vector function r(t) is p > 1 times

continuously differentiable for every value of t in the specified interval,

and at least one component of the first derivative

dr

dt (2)

is different from zero. Note that the parameter t can be expressed in

dr
terms of any other parameter, say i, provided that # 0.
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(i) Tangent vector:

Choose s, the arc length along the curve as a parameter. Let

r(s) and r(s+h) be nearby points on the curve. Then the limit

t(s) = L r(s + h) - r(s)
11-0 h

dr (3)

ds

is the unit tangent vector at the point s on the curve. Note that

1drl

ds

If s is replaced by another parameter t, then

dr dt

dt ds I (4)

A straight line in the direction of t from the point s on the curve is

the tangent line to the curve.

(ii) Principal normal:

Since

ttl

hence by differentiation

dt
t • -= 0ds

dt
so that the vector d is orthogonal to t and is called the curvature

ds

vector. We shall denote it as k,
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t )
ds

The unit principal normal vector is then defined as

p k/IkI (6)

The magnitude

k(s) = Ii , p(s) = 1/k (7)

is the curvature of the curve and p is the radius of curvature. The

principal normal is directed toward the center of curvature of the curve

at that point.

(iii) Normal plane:

The totality of all vectors which are bound at a point of the curve

and which are orthogonal to the unit tangent vector at that point lie in

a plane. This plane is called the normal plane.

(iv) Osculating plane:

Choose any three nearby points on a space curve through which a

plane can pass. Let the equation of this plane be written in the current

variable r as

r • a=c (8)

where a is perpendicular to the plane. We now define a function f(u) of

the parameter u,

f(u) = r - a - c (9)

Vet x. be the point on the curve where the parameter has the value
-1

u. . The three points chosen on the curve are denoted as ul, u 2 , u 3 such
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that they satisfy eq. (9), i.e.,

f(u1) = 0 , f(u2 ) = 0 , f(u3) 0 (10)

Hence according to the Rolle's theorem

f'(cl) = 0 , u1 < 1 < u2

(11)

f'( 2) = 0 , u2 < 62 < u 3

Because of eqs. (11) we can again apply Rolle's theorem to the function

f'(u) in the interval C 1 u ! 62, so that

f " ) = 0 , i <  3 <  6 2(1 2 )

As the two points u2 and u3 approach in the limit to ul, we have

u2,u 3, , 2, 3  -- U 1

and equations (10), (11) and (12) yield

f(uI) = 0 , f'(ul) = 0 , f"(u I) = 0 (13a)

or,

a=c ,t a 0 ,k a= 0 (13b)

Combining equations (8) and (13b), we get the equation of a plane at X,

r = x1 + Xt + Pp (14)

where A and P are scalar parameters. This plane is called the osculating
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plane, and as shown by (14) it is spanned by the unit tangent and the

unit principal normal vectors.

(v) Binormal vector:

A unit vector b(s) which is orthogonal to both t and p is called

the binormal vector. Its orientation is fixed by taking t, p, b to form

a right-handed triad as shown in Fig. 5.

Figure 5.

Thus

b t x p (15)

Note that for plane curves the binormal b is the constant unit vector

normal to the plane, and the principal normal is the usual normal to the

curve directed toward the center of curvature at that point.

The twisted curves in space have their binormals as functions of s.

Because of twisting a new quantity called torsion appears, which is

obtained as follows.

Consider the obvious equations

b • b = 1 , b • t = 0 (16)

Differentiating each equation with respect to s, we obtain
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s - 0 (17a)

dt db
b -+ -t O (17b)

Thus

- .t -kb p
ds -

=0 (17c)

From (17a,c) we find that -is a vector which is orthogonal to both t
ds

db
and b. Thus lies along the principal normal,

- ds

db- T

ds--

db
To decide about the sign we take the cross product of b with i-- and take

it as a positive rotation about t.

Figure 6.

Thus

db
x -- = -it (18a)

ds -

and

db
-= -Tp (18b)
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§.1. Serret-Frenet Equations.

A set of equations known as the Serret-Frenet equations, which 
are

the intrinsic equations of a curve, are the following. Differentiating

the equation

pbx t

with respect to s, we have

dpp tb - kt (19)

ds - ~

Equations (6), (18b) and (19) are the Serret-Frenet equations, and are

collected below

dt
- = kp ; k curvatureds

db
-= p ; T = torsion (20)

ds

=b - kt
ds

For a plane curve, T 0, so that

b = constant

~H
dt

kp (21)
ds ~

F dp
-= -kt
ds
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§2. Geometry of Two-Dimensional Surfaces Embedded in E3 .

In the theory of surfaces, embedded in E3 , we shall use ul , u2 ,

Ete

or u as the coordinates in the surface and x i (= 1,2,3) as any

general coordinat., system in E3 . An element of directed segment dr

is then represented as

Dr " idxdr -- dx=a (22a)

ax i -

If the same element belongs to a surface S, thenar a
dr = du  r du (22b)

cJu

since in principle

r = r(x ) = r(x i(u 2 ,u 2 ))

for points belonging to the surface. Also since

i ii"
X = x (u ,u 2 ) (23) "1

hence

dx = axl du a xidu (24)
aun

where we have used the notation

i axi

x0 = a (25)
ue

Now the metric formed from (22) is
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(ds) 2  g dxidxj (26)

so that on using (24), we get

- i i a 6

(ds)- = gix x du du

= a sduadu8 (27)

The three quantities

aXX (28)

form the components of a symmetric tensor, called the fundamental metric

tensor of a surface. In the old literature, the following non-tensorial

notation is alsso used.

a 1 1 =Ea 1 2 =a 2 1  F, 22 =G

Since in an Euclidean space we can always choose a rectangular

Cartesian system, so that

gij ij

and then

= 6ix x (29)

From here onward we shall return to the symbolism of Part I and use

the notion g for aij as there is no chance for confusion if the meaning
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is clear from the context. Thus, we shall take the metric of a surface

with coefficients g rather than a$, as

(ds)2 = g adxadxa (30)

Sometimes when there is no use for an index notation we have used the

symbols

x= u or , u 2 = v or n

Therefore

(ds)2  gil(du)2 + 2gl 2dudv + g2 (dv)2  (31)

The metric (30) for an element of length in the surface is called

the "first fundamental form" for a surface. Some expansions for future

reference are listed below. A variable subscript in the formulae given

below stands for a partial derivative.

g x 2 + y2 + z2 = r " (32a)

g = xxv + yuyv + zuZ = r r2 (32b)

9 21

2 + y2 + z2  r 2 (32c)

(v) = g 1 1 g 2 2 - (g12)
2  (3 3 )t

tTo distinguish the "g" of the general coordinates (cf. Part I) from the

"g" formed by the coefficients of the first fundamental form of a surface,

we denote the latter by gm, where v stands for a coordinate held fixed
on the surface.
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& g = (34a)

911 921() 12 = 9 21 = _g2g0),9 2 2 
= 19,) 3b

where v is a parameter which remains fixed on a surface.

Let 0be the angle between r1 =-- and r = Then
1 3 -2 3V

cos 0 (r I Y2 //g11g22 = g1 2//g11g22  (35)

and

J < r 2 1 g1lg22s in
2 o

g g1 1 g22( -cos
2 6)

- g (36)

From (35) we see that the surface coordinates are orthogonal if

g2=0.

The base vectors in the surface defined in (22b), viz.,

tt

tWe again emphasize the notation that a subscripted r such as r or r
stands for differentiation with respect to uor u Onl whe ep-

sions have been opened in full, the notation ul us =2 v has been
used.
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define the unit normal vector n at each point of the surface through

the equation

rI × 12  1 D 3r
[ 1 x r 2 g ) ( 

× 
- -vX ( 3 7 )

The Cartesian components of n will be denoted by X, Y, and Z, so that

from eq. (37)

X j ,1 (v ' '19 I Z J /11- (38)
= ' Y = (2 () ' 3 (v)

where

1 u Zv - vzu

J x Z -x z (39)

2 v u u v

I xy -xy
3  uv v u

§2.1. Normal Curvature of a Surface: Second Fundamental Form.

A plane containing t and n at a point P of the surface cuts the

surface in different curves when rotated about n as an axis. Each curve

is known as a normal section of the surface at the point P. Since these

curves belong both to the surface and also to the embedding space, a

study of the curvature properties of these as space curves also reveals

the curvature properties of the surfaces in which they lie.

We decompose the curvature vector k at P of C, defined in eq. (5),

into a vector k normal to the surface and a vector k tangential to the-n -g

surface as shown in Fig. 7.
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Figure 7.

Thus

k k + k (40)
- -n -g

The vector k is called the normal curvature vector at the point P. It
-n

is directed either toward or against the direction of n, so that

k = n k (41)
n n

where k is the normal curvature of the normal section of the surface,n

and is an algebraic number.

To find the expression for k , we consider the equationn

n t =0

and differentiate it with respect to s

dn-- * t + n • (n k + k ) = 0
ds - ~ n g

or,

-dn • dr
k =(42)

n (ds)2
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Also, differentiating the equation

with ua to have

n r +n r =0 (43a)

or,

n 0, - (43b)

Further,

dn =n d uo

-Q (44)

dr = r du~

Using (43b) and (44) in (42), we get

k = (n- r )du OEdu (5
k = ii r (d s ) 2  ( 5

We now introduce the quantities b 0aas

ba nr. (46a)

=-n., r (46b)

r (r xr )(46c)
-1 -2 ca

g(V)
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Thus (45) becomes

b e du a duo
k = b -d-du-(47a)

n (ds)2

ba dutdu o (47b)

g Pv duPdu V

The form

b duLdu (48)

is called the "second fundamental form" of the surface theory. The

expanded forms of b U are

bi= Xx +Y + Zz

buu +YYuu z uu

b12 Xxuv + YYuv + Zz = (49)

b22 = Xx + YYvv + Zzvv

Similar to g(v), we also define

b b 22 (b )2 (50)

It is shown in standard texts on differential geometry, e.g., [6], [13],

[171, etc., that points on a surface can be classified as follows.

b > 0 , elliptic point

b = 0 , parabolic point (51)

b < 0 , hyperbolic point
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We now return to a consideration of k First notice that
n

n • k = n (n k + k )

=k (52)
n

Since p is the unit principal normal to the curve, hence

k = kp (53)

Using (53) in (52) and denoting

n • p = cos y (54)

we obtain

k = k cos y (55)n

Therefore if = 0, then k = kn; if y = j-, then k = 0 and the curve isn 2 n

a plane curve; if y = 7T, then k = -k . Letn

1 1
k=-, k

p n Pn

then

P = P cos y (56)n

Equation (56) gives a theorem, called Meusnier's theorem: The center

of curvature 0 of all curves on S at P having the same tangent t lie on

a circle of radius lI pn, Fig. 8. K
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Figure 8.

§2.2. Principal Normal Curvatures.

From (47b), writing

dv
du

we have

k b1 + 2Xb 12 + X2b22
n 911 + 2Xg 1 2 + X

2 g2 2  (57)

The coefficients g 8 and b are constants at P, so that kn is determined

by the direction A. Thus all curves through P having the same tangent

and the same sense of n have the same normal curvature k~ n

To find the extreme values of kn, we differentiate k with respectn

to A and set it equal to zero. Thus

dkn

d - =  0 (58)

The roots of the above equation determine those directions for which

the normal curvature k assumes extreme values. These directions are~n
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called the principal directions and the corresponding values of k aren

called the principal normal curvatures at P of the surface. To find

these values, we first write (57) as

k A+AB

n C+XD

where

A = b12 + b12

B = b1 2 + Xb 22

C = g11 + g1 2

D = g1 2 + Ag2 2

On using (58), we get

B A A+XB
= k

D C C+AD n

Elimination of A between the two equations

B-Dk =0
n

A-C k =0
n

gives

k2 1 gb 2 bb ) b 0(5an go 1(g1 b22 - 2g1 2b1 2 + g22bll)k + = 0 (59a)
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or

k2  b g k + b 0 (59b)n a$ n g(V)

The roots of the above equation denoted as k and k2 are the principal

normal curvatures. Obviously

k1 + k2 =bCBg (60)

kk 2 b (61)
1lk2 =g(o

Some definitions based on the above derivations are given below.

(i) Asymptotic directions:

Points on a surface where k = 0 give two directions through then

equation

b222 + 2b2 +b = 0
22 12 11

or

dv -b 1 2 ± /(b 1 2 )
2  11 bb22 (62)

du22

These directions are called the asymptotic directions. If a straight

line can be drawn on a surface then it is obviously an asymptotic curve.

(ii) Lines of curvature:

The line of curvature is a curve whose direction is a principal

direction at any of its points. That is, at every point of a line of

curvature the normal curvature is either kI or k2 . Thus the lines of

curvature are the solutions of the equation (58), viz.,
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gdbv 2 + g b - g b )d v

(g12b2 2 - g2 2b1 2 )(du) + (gb 22 - du

+ (g11b1 2 - g1 2 b1 1 ) = 0 (63)

Note that the equation (63) is equivalent to two equations of

the first degree. Thus eq. (63) defines two families of curves on a

surface. Moreover, the two curves are also orthogonal. (Refer to

eqs. (123) for proof.)

(iii) Coordinate curves as lines of curvature:

If the curves u and v on a surface are lines of curvature, then

from (63) we have for

u const.

912 b22- g2 2 b1 2 = 0 ,

and for
v = const.

9 1 - g mb = 0 

Thus in these coordinates

0 , 0 (64)

Because of (64), (57) becomes

h du 2  
dVs

k =b (T~) + b X)n llds 22(ds

so that
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for v = const. , (u-curve) : k =

(65)

b22

for u = const. , (v-curve) : k b 2
2 22

(iv) Gaussian and mean curvatures:

The product of the principal normal curvatures as defined by (61)

is the Gaussian curvature K.

K = kIk2 =b/g() (66)

Similarly the mean curvature Km is defined by (60) as

1

K= 2(kI + k2 ) (67)

Surfaces for which K = 0 are called minimal surfaces.m

The structure of the formula for the Gaussian curvature K given in

(66) shows that it is an extrinsic property. In fact K is an intrinsic

property of the surface, viz., it depends only on the coefficients gaa

of the first fundamental form and their derivatives. Refer to eq. (91)

for this aspect of K.

Note that if K > 0 then both the principal normal curvatures have

the same signs, while if K < 0 then they differ in sign. For example

K > 0 for ellipsoids, elliptic paraboloids and spheres, etc., while K < 0

for hyperbolic paraboloids, hyperboloids, etc.

§2.3. Equations for the Derivatives of Surface Normal (Weingarten
Equations).
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Since

n n=l

hence

n * n 0 , n = 1,2 (68)

which shows that n lies in the tangent plane. Consequently nI and

must be linear in r and r2.

n = Pr + Qr2  (69a)

n = Rr + Sr (69b)
-2 1 -2

To find P, , 5, we first note that

n r 0 , n r2 =0 (70)

Differentiating the first equation in (70) by u2 and the second by u1 ,

we get

*l 2 = 2 r (71)

Thus from (46b)

-b =n r

-b1= n1 •

(72)

= 2 • rI
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Using (72) in eqs. (69), we get

Pg11 + Qg1 2 = -bl1

Pg1 2 + Qg22 = -b12

(73)

1Rg1 + Sg 1 2 = 12

Rgl2 + Sg2 2 = -b22

Solving eqs. (73) we get P, Q, R, S, and hence

mi = g)(b 12g1 2 - b 1 1 g2 2 )r 1 + - (b1 1 g 1 2 - b1 2 g 1 1 )r 2  (74a)

'2 = 1  (b22912 - b12922)r + 1(b1292 - b22911)r2 (74b)

(v) g(b)

In suffix notation, eqs. (74) are written as

tin =-_bg r (74c)

0, -Y

Equations (74a,b) or (74c) are known as the Weingarten equations.

§2.4. Formulae of Gauss and the Surface Christoffel Symbols.

The vectors r1 ' r2 and n form a system of independent vectors in a

three-dimensional space. It should therefore be possible to express the

vector r in terms of these vectors. Thus we assume~aB

r = rT + Bn (75)
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Since n is orthogonal to b i and r2P hence from (46a) we find that

B =b L •

Next taking the dot product of (75) with r 6 we get

TQ =r •r (76)

We now write

r6 = [c0,&] (77)

where as before (refer to eq. (129) of Part I), the quantities [caO,6]

are called the Christoffel symbols of the first kind. If we now take

o6
the inner multiplication of both sides of eq. (76) with g , we get

a= g [ca6, 6 ] (78)

The quantities T defined in (78) are the Christoffel symbols of the

second kind. (Refer to eq. (133) of Part I.)

The equations

=T'sr + b ,n (79)

are called the formulae of Gauss for the second derivatives rB.

The Christoffel symbols defined in (77) and (78) have got exactly

the same structure as in the general case discussed in Part 1, §4.

Note: The symbol T is the capital upsilon of the Greek alphabets.
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However, because of the two-dimensional manifold under consideration,

the Greek indices range only from 1 to 2. We shall keep the notation

T in place of F for the Christoffel symbols of the second kind so as

not to cause confusion in their use to be discussed in Part III.

§2.4.1. Christoffel Symbols.

For future references, we now list the expanded forms of the

Christoffel symbols for a surface.

1ag 6  ag ag
1( -  + -g -3) (80)2 ua  3u u6

T°  6a
Ta g [c ,61] (81)

Writing ul = u, u2 = v, we have

3g 11 g12)
1gll + g 2 /g(82a)

S [g 2  2 g22 1/2211au (V)(8)

22 = [g 22 av + g1 2 ( u 2 (2b)

a g1 2  ag2 2  ag22 (

22 [g2 2  3v au g12  3v /2g( )

F (2g 1 2  ag11. agll]1 (

11 [g1 1 (2 au - v g1 2  au-I/2g() (82d)

=g T~=( 11  3g_22

12 1 (g l _ - g1 2  2g (V) (82e)
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ag 2 2  agll
T2 T (g u v )/2(v) (82f)

1T 2  (82g)

2g(V) 3u 11 12

- - : T I + T (82h)
g M 3v 12 22

Note that the g in eqs. (82) are those which have been defined in (32)

and (33).

From eq. (134) of Part I, we have the result

ij = rij (83)

where

ax

rrij ;xli xi a)xi

It is worthwhile to compare (79) and (83) in the same coordinates in the

sense that at the surface both should coincide. This idea will be

explored fully in Part III.

§2.5. Intrinsic Nature of the Gaussian Curvature (Equations of Codazzi

and Mainardi).

The position vector r in an Euclidean space can always be represented

in terms of the constant unit vecotrs. Thus it is clear that
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-(r ) = -(r ) (84)
D au au

for any choice of a, a and y. We now use eq. (84) to obtain some

important results of the surface theory.

On differentiating eq. (79) and using (74c), while properly taking

care of the dummy indices, eq. (84) yields

6  3T6

a a +T(' T 6  ~TA T 6
u (b aua ya ay Bs

_g 6(b~bo _-bc~b)]r 6

+(- + T by - Tyb)n 0 (85)

Since r (6 = 1,2) and n are independent vectors, hence the coefficients

of r6 and n must vanish separately.

The term in curly brackets in (85) is the two-dimensional version

of the Riemann-Christoffel tensor defined in Part I, eq. (240). For

the sake of clarity, we use R* in place of R for the two-dimensional case.

Thus (85) yields the equations

*6 Cy6
R -g (b b -b b )0 (86)

b Y bay+ Ta by6 - T CbL = 0 (87)
au~ Du5  6 c''
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A two-dimensional Riemann curvature tensor (similar to eq. (244), Part

I) is now introduced as

* *6

R =gR *y (88)

Thus (86) becomes

R = b - b b (89)

As discussed in Part I, §8.1, the covariant Riemann tensor has in

all 16 components in a two-dimensional space out of which, apart from

sign, only four are non-zero. Thus the four components are

R1212 R 2121 R 2112 ' R1221

where

R1212 R 2121

and

R2112 R 1221

Therefore from (89)

R R =b (90a)
1212 2121

R2112 m R1221 =-b (90b)

122



Using eq. (66), we get from (90a)

K = R12 1 2/g(v) (91)

Equation (91) shows that the Gaussian curvature is an intrinsic

property of the surface, since R1212 is formed purely of the coef-

ficients ga and their derivatives. This is the "Theorema egregium"

of Gauss.

Equations (87) are known as the Codazzi-Mainardi equations. The

only two possible equations from (87) are

b 1 1 b 1 222

11v 12 - bl T1  + (TI T 7 )b + T2 b 0 (92a)
v u 112 11 12 12 11 22

b22 b12

+ 7l11 + (T2 TI )b - T b =0 (92b)a v 122 22 12 12 12 22

§2.5.1. A Particular Form of Codazzi Equations.

Consider the case when u and v are the lines of curvature, so that

g 0 b 0. (93)

From (82):

T 1 agll  T2 1 g

12 2g1 1 av' 11 2922  av f~
(94)

22g 22 _

2 1 g22 T g22
12 2q22 3u ' 22 2gll au
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The set of eqs. (92) take the form (by the use of eq. (65)),

v= 2(kl + k2  D (95a)

_b 22 1 g2 2  (95b)

u= 2(kl + k2 ) au

Opening the derivatives - (kl9 ) and (kg2)and using (95), we get
3V (k1 1 a 2

1 1 ( k k gD v 1  (9 6 a )

3v 211 2 1a

2 1 k k2 ) 22  (96b)

§2.5.2. The Third Fundamental Form.

Let all the unit normal vectors n to a surface have been translated

parallel to themselves such that their initial points are tied at the

origin of coordinates. The terminal points will then lie on the surface

of a unit sphere, for ordinary surfaces. The first fundamental form for

this sphere will then be

c duadu

where

c n • (97)

As before, denoting the components of n with respect to the Cartesian

coordinates as X, Y, Z, we have the expansions
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= X2 + y2 + Z2

11 u u u

c 1 2 = u v . Yu v V + Zu v (98)

= X2 + y2 + Z2

c22 v v v

Using the Weingarten equations (74) or (74c), we can also write (98) as

(g22bl2 - 2g12 b1 2b + g+ b2)/g( )

c = [g 2 2 blb 1 2 - g 1 2 (bllb2 2 + b 2 ) + gl1 b1 2b22 ]/g(V) (99)

22= (g,2 bi2 - 2g 1 2 b 1 2 b 2 2 + 22)/g(,)

Al so

c = C1 1c2 2  (c12 )2 b 2 /g() (100)

§2.6. The Geodesic Curvature.-

In §2, eq. (40) we wrote the curvature vector k as the sum of the

normal curvature k and a tangential curvature k . The vector k is
-n -g ~g

called the geodesic curvature vector, and its magnitude as the geodesic

curvature k
g

Since the vector k lies in the tangent plane to a surface, we~g

define a unit vector e as

e = n x t (Fig. 7) (101)

and write
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k e k '(102)
-g g

Now
A

k e - kg ~

dt dt
= -=(n x t)
ds ~ds

dt
(t x -=)ds - (103)

Further

dr du1t d r d (104a)
ds a ds

and

dt d2r dun du+ d2un (104b)
-ds = = a ds ds r

Using (79) in (104b) and putting in (103), we get after some simplifica-

tions

k= /g[T 2 (U) 3 -TI dv)3 (2T2  - T )( 2 ( Lg (v) lids 22s 12 11 ds ds

(2T 1
2 T12 ) dv 2 du du d2v dv d2u(

12 22 ds s ds ds2  ds ds2 (105)

Thus, on the curves u = const., and v = const., we have

(k~m ,,g- 3/2
(k = /g2 (106a)
g u = const.
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(k V / T 2  3/2 (

g v = const. (v) (1

If the coordinates are orthogonal, then

(k) 1 (gn.g) (107a)

u = const. g11

(k) _ 3(n/) (107b)
v = const. g22 av

A curve C on a surface S is called a geodesic curve or simply

geodesic if its geodesic curvature vanishes. Therefore for u const.

to be a geodesic

T1 = o (108a)
22

similarly for v = const. to be a geodesic

T21 = 0 (108b)
11

§2.6.1. Geodesics and Parallelism on a Surface.

Having defined the geodesics as clirves on a surface whose geodesic

curvature at each point is zero, we must now find the differential

equations of the geodesics.

A vector in the tangent plane of a surface is known as a surface

vector, or a vector in the surface. If u' and u2 are the surface coor-

dinates, then according to eq. (22b) the vectors r are the surface base

vectors, and they are related with the space base vectors ai as
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i i ax t
r aix a x a D

Let A be a surface vector field. Then

A = r Ba

Since A can also be regarded as a vector field in E3, hence

A a aAi
- Ai

Thus

Ai cxi
cia

Let us consider a curve on the surface whose parametric equations

are 
,

= u (t)

Then

A = A(ua(t))

Consequently

dA dB a  a duo--2 .= r + B r
dt dt -a ~CaB dt

Using (79), we get

ddu
= [BIrc + Bcib n]- (109a)
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where B1 is the covariant derivative of Be defined as

Ba = aB-- + BYTQ (109b)Pa auB  Y

The quantity

B a duB

- B (109c)

is called the intrinsic derivative of A on the curve u a u a t.

It is interesting to note that

dA 6Ba
A --= = B

dt a 6t

where B are the covariant surface components of A. Consequently

a ~(I2) =- -(B B O) (109d)

In place of an arbitrary vector A, let us consider the tangent vector

field t(s) on a surface curve u = ua(s). Then

duat =rt a ds

and

ds a r a + taben ] d (110)

*tThe definition of the covariant derivative in a surface is the same as in

any other space. Refer to Part I, §4. The only care one should take is to
replace r by T for the Christoffel symbols.
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=k

=k +k
-n -g

Since on a geodesic curve k = 0, hence from (110) we find that for~g

the geodesics

t adu08t, du (ill)

,8 ds

Thus the geodesics in a surface are the solution curves of the equations

du + Ta du du 0 ,a = 1,2 (112)
ds 2  T8  ds ds '

The definition of a parallel field of vectors in a space of any

dimension was given in Part I, §7, eq. (220b). The same definition is

applicable in the surface, viz., for a parallel field of vectors A, the

intrinsic derivative is zero.

dt + BYT t = 0 (113)dt 8y d

Equation (113) is also called the condition of parallel displacement in

the sense of Levi-Civita. This means that in the covariant differentia-

tion the Christoffel symbols T are used. It must be noted that a

covariant differentiation can also be defined in which another three

index symbol, say Ga, is introduced, eyl [33].

§2.7. Differential Parameters of Beltrami.

E. Beltrami in 1864 introduced four differential parameters which
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greatly simplify the representation of some formulae in the surface

theory. If 4 is a function of the surface coordinates u and v, then the

differential parameters of the first and second orders are as follows.

(i) First order:

A = (g l2 - 2g + g224))/g(v) (114a)

1(¢, ) = [g 110A 124u- gl2(u + Vu ) + g22 uu] /g(v) (114b)

(ii) Second order:

3 22'ou - 1 ?4) gllo~v gloA24) = ) + -  g( -  ) I / g(7) (114c)

(V) .9(v)

A2 4= [(4)u - T'lou - T2 4) )(') - T 1 4)- T2 4
uu220lv v 22ou 22ov

-4 -T 14 - T2 0) 2]/gv (1d
uv 12 u 12 ve (v) (114d)

The parameter A is the surface gradient of 4, viz.,

A g au

The parameter Ai(¢,4) 1 i related with the angle e between two curves 4 =

const., 4 = const., as

A1 (4),p) = -/(A1 ¢)( p) cos e (115)

Thus the curves 4) const., and 4 = const., are orthogonal if
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A = 0 (116)

The condition equation (116) can be linked with a second degree

equation in dv/du whose solution curves are orthogonal. We recover this

theorem in a way different from that in Ref. [ 6 ], p. 80, as follows.

For * = const., and 4 = const., we have the auxiliary equations

'udu + vdv = 0

u du + vdv = 0

Thus

dv -u - udv ' (117)

du v v

so that

u'v - Ov'u =0 (118)

Using (118) in (116), we have

gl1 viv - 2g1 20Ap + g220u~u = 0 (119)

We now introduce the symbols

vv T u = S , 0u R (120)

so that the condition of orthogonality is

g11T - 2g12 S + g22 R = 0 (121)
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Using (117) in (120), we also have

T = ,u~u(d )
u u dv

du
u u dv (122)

u u

From (122), we find that

R(du)2 + 2S dudv + T(dv)
2

is identically zero. We therefore state the main result as follows.

"The ordinary differential equation

R(du) 2 + 2S dudv + T(dv) 2 = 0 (123a)

for arbitrary R, S and T yields orthogonal solution curves if and only if

g11T -
2g12 S + g22 R = 0 " (123b)

The second order differential parameter given in (114c) also allows

us to define a second order differential operator,

A2 = 1 a i )2 (¢ [ u '- (g2 2 -g 1 2 "v

r-a au 12-
(v) (V)

+ (gl - 9 L] (124)
3v 133
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Thus

1 _a 9 a___2.A2u ]- ( -)] (125)
2 g ~ ()) (V) 9(v),

i~ 1 [-L 911 a 9 12)

av= __ [v_--_ - *ui 1 ] (126)

In Part I, eq. (190) we introduced a second order differential

operator in a plane. For a two-dimensional surface it assumes the same

form

g 22 auu - 2g12auv + g1 1 avv (127)

Using (125)-(127) with

F M 8(v)A2 u G = g(v)A2 v (128)

we can write (114c) as

A = (D + F4u + G V)/g(v) (129)

§2.7.1. First Differential Parameters.

Let x, y, z be the Cartesian coordinates. It is easy to show based

on the expansions (32) and the components of the unit normal to a surface,

eq. (38), that

A x = I - X2

Aly _ 1 _ y2
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r

Az = -Z
2

Al ( x,y) = -XY

A1(y,z) = -YZ

A(x,Z) = -XZ

(130)

If u and v are the surface coordinates, then

A1U = gll = 8221g(v)

A1v = g22 = gll/g(v )  (131)

A1 (uv) = g12 = _gl2/8(v)

§3. Mapping of Surfaces.

Let there be two surfaces S and S in which the parametric coordinates

are denoted as (&,n) and (f,n) respectively. The mapping of a portion

of S onto a portion of S is called a one-tp-one mapping when it is

possible to establish the functional relations

fl(&,n) , n = f2 (&,n) (132)

where f and f are differentiable functions of the desired orders, and
1 2

the Jacobian of the transformation is not zero, viz.,

n n 0
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In a three-dimensional space E3 , the two points on S and S, which

transform into one another under the mapping (132), are respectively

r = ,n)(133a)

r= ,(133b)

Using (132) in (133b), we get

r T(fl(Q ,r)), f2( ,O))

Thus the two points which are the images of one another are representable

through the same parametric coordinates as

r =- ( ,r)'

(134)
r = X( ,n) "

Equation (134) expresses the meaning of the sentence, "the coordinate

systems on S and S are the same."

Below we discuss various mappings from one surface to another. Some

definitions have been taken directly from Ref. [18].

(i) Isometric mapping:

A mapping of a portion S of a surface onto a portion S of a surface

is isometric if and only if at corresponding points of S and S, when

referred to the same coordinate systems on S and S, the values of g a

on S and S are the same.
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Thus for isometric mapping

g9 ( , O 
= g (Cn) (135)

(ii) Equiareal mapping:

A mapping of a portion S of a surface onto a portion S of a surface

is equiareal if and only if at corresponding points of S and S, when

referred to the same coordinate cystems on S and S, the values of g()

and g(,) of the first fundamental form are equal.

Thus for equiareal mapping

g(v)( , ) = g(v) ( ,n) (136)

(iii) Geodesic mapping:

A mapping of a portion S of a surface onto a portion S of a surface

is geodesic if and only if at corresponding points, when referred to

the same coordinate systems on S and S, the following relation holds.

T = + 6 + (137)

where

f -i -n(g/g) (138)

and

u1

U ,
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The proof of (137) follows directly from (105) equated to zero.

Since the proof of all the statements in (i), (ii), and (iii) above are

already available in Ref. [18], the reader is referred to that work.

(iv) Conformal mapping:

A mapping of a portion of a surface S onto a portion of a surface

S is conformal if and only if, when referred to the same coordinate

systems on S and S, the coefficients ga and g are proportional at

each point, viz.,

= X(,n)ga . (139)

As the name "conformal" suggests, the angle between the two inter-

secting arcs in S is preserved in mapping to S.

(v) Conformal mapping of surfaces in a plane:

A theorem on conformal mapping of surfaces in a plane states that:

"Every portion of a surface S, which is at least three times continuously

differentiable, can be conformally mapped into a plane."

In a plane it is always possible to introduce Cartesian coordinates.

If we denote these coordinates by u and v, then we will first show that

from a general coordinates C,n in a surface in which the metric is

given as

(ds) 2 = g11 (d&)2 + 2g1 2d~dn + g 2 2 (dn) 2  (140)

we can devise a transformation such that the same ds is given by

(ds)2 = A(u,v)[(du) 2 + (dv)2 ] (141)
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The coordinates u and v are called the isothermic coordinates.

First note that (140) can be factored as

1 (g + ii(gd -,

(ds)2  = [V 11 d + 1(g 2 +  )dn][ 11 dE +[1g(g 1211gll 1 ( i ) d g+ - (v

811

where i = /4. For each term in the brackets there exists an integrating

factor. Let f1 (C,n) and f2 ( ,n) be real functions, then we can form

perfect differentials

dE' = (fl + if 2 )[,g,, d + (g 1 2 + i g)d]

d = (f1 - if 2 )[Vg- dC + -1 (g 1 2 - iYg7d

Thus

(ds)2  d 'dr' (142)fd) =f 2 + f22

1 2

The curves 6' - const., and n' = const., are called isotropic curves.

Since 6' and n' are complex conjugates, hence

u' u+ iv , r' u-iv (143)

Using (143) in (142), we get

(ds)2 - A(u,v)[(du) 2 + (dv) 2 ]

where

=(f1
2 + f2 2 )-1
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We thus find that a coordinate transformation from ( ,r) to (u,v)

exists in which

g2 2 = gil ' g12 = 0 (144)

The above analysis proves the theorem of conformal mapping of

portions of S into a plane, and also introduces the concept of the iso-

thermic coordinates. In essence, the isothermic coordinates in a surface

are those coordinates which are orthogonal and in which g22 = g11 =

so that the metric in the surface is given by (141).

§3.1. Isothermic and Equiareal Coordinates on a Sphere.

We take the parametric equation of a sphere of unit radius as,

(refer to Fig. 9 and eq. (153)),

x = sin e cos , y =-sin 8 sin 4 , z = cos 8

where * and Oare measured clockwise from the x- and z-axes respectively,
and 0 = 0, 0 = r represent the north and south poles respectively.

0 < 0 < 7T

16 

0 < 
< 27

Xj Figure 9.

Thus g = sin 2e, g22 = 1, g(v) = sin 2e, so that the metric on the surface is
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(ds)2 = sin 2O(do) 2 + (dO)2  (144)

(i) Isothermic coordinates on a sphere:

We follow the technique shown previously from eqs. (141)-(143).

First

d = (f + if )sinO " d( + i Zn tan -)

1 2 2

d,' = (f1 - if2 )sin" d(4 - i Rn tan

Second

f1sine ' f = 0

then

'= + i Zn tan -

2

=u + iv

i-' = - i Zn tan g I.

= U - iv

Equating the real and imaginary parts, we get the mapping

u 2tan- (ev) (145a)

or

un tan 2 (145b)

2
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The equations (145) define the isothermic coordinates on a unit sphere.

It is an easy matter to verify that using (145), the Cartesian coordi-

nates are

vV 2v
2e cos u , -2eVsin u 1 - e(1

1 + e 2 v  1 + e2v 1+ e2 V

in which the metric coefficients are

4e 2vg2 2 
= g1  = 4e 2 (147)

11 (1+e 2V

and the metric has the required form,

4e 2v
(ds) 2v 2V[(du)2 + (dv)2 ] (148)

(+ e

(ii) Equiareal (mapping) coordinates:

The mapping

U = v = 2sin 0 (149)
2

yields the metric

(ds) 2 
= (dv)2 + v2(1 - ] 2)(du)2 (150)

42

The mapping (149) is equiareal, for if we take an auxiliary Cartesian

plane x y in which the polar coordinates are v and u so that

X - V Cos U
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y =-v sin u

then the metric in this plane will be given by

(ds*)2 = (dv)2 + v 2 (du)2  (151)

Thus the value of g(,) in both spaces are the same, which is the

condition of equiareal mapping.

The transformation (149) establishes a one-to-one correspondence

between the points of a unit sphere and the points of a plane. As e

varies from 0 to ff, v varies from 0 to 2. The north pole is the center

of the concentric circles. The limiting circle on the outside is the

south pole. (Fig. 10) y

t,

x

Figure 10.

§4. Some Standard Parametric Representations.

For reference purposes, we list some parametric representations for

known surfaces. In the following we have used u (n = 1,2) to represent

the surface coordinates. (Taken from Ref. [181).

(i) Sphere of radius a:

r(u") = (a cos u2cos u1 , a cos u 2sin ul, a sin u2) (152)
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0 : ul < 27r, j u2

or

r (u ) (a sin u 2 cos u1 , a sin u2 sin ul, a cos u2) (153)

0 : u < 2n, 0 :5u <f

(ii) Cone of revolution:

r(u)= (u 1cos u2, u1sin u2, a u1) (154)

0 < u2 < 2Tw

(iii) Ellipsoid:

r(u )CL (a cos u2cos ul, b Cos u2 si ul, c sin u2) (155)

(iv) Elliptic paraboloid:

u)= (a ulcos u2, b usin u2, (ul)2) (156)

(v) Hyperbolic paraboloid:

ru)= (a ulcosh u2, b u1sinh u2, (ul) 2) (157)

(vi) Hyperboloid of two sheets:

r(u )=(a sinh uo u2, bsinh u1sin u2, c cosh ul) (158)
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Part III

Basic Differential Models for Coordinate Generation

§. Problem Formulation

The problem of generating spatial coordinates, either by analytic

or numerical methods, is a problem of much interest in practically all

branches of engineering mechanics and physics. A look at the older

literature shows that most problems in fluid mechanics, electrostatics,

potential theory, space mechanics, even relativity, etc., which have

been classified as solutions of permanent value, are for discs, flat

plates, circles, spheres, spheoriods, cones, ellipsoids, and paraboloids,

etc. The main reason for interest in these shapes is because of the

availability of exact analytic coordinates which are body conforming,

so that the physical conditions at their respective surfaces can be

exactly imposed. In some cases the governing equations in these coordi-

nates are much simpler than in any other coordinates.

The coordinates for the above mentioned shapes and a score of

others are obtained by the use of elementary geometrical and algebraic

methods, which are introduced at a very early stage of one's mathematical

and engineering education. Later, at a slightly higher level, in courses

on differential geometry, these coordinates are repeatedly used in

exercises to investigate the geometric properties of surfaces and of the

curves which are formed in them. These geometric properties are obtained

by using the differential relations which have been developed in Part

II of this report. A question which naturally arises at this stage is

145
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this: Is it possible to develop a set of consistent differential

relations and equations from the available body of differential-

geometric results so as to generate coordinates for arbitrary shaped

given bodies? In fact this question has been addressed by various

researchers after Gauss, not from the point of view of arbitrary shaped

bodies, but for specific characteristics of a body. As an example, the

most widely studied problem has been of generating a surface, and so

its coordinates, when the mean curvature is zero everywhere in the

surface. Such surfaces are called the "minimal" surfaces. Weingarten

surfaces provide another example. Eisenhart in 1923 published a book

[34] on conjugate and other forms of coordinate net in surfaces.

The material of this chapter should not be taken as a review of

the existing methods of coordinate generation but rather as an attempt

to bring in the ideas of tensors and differential geometry in formulating

problems of coordinate generation. (A comprehensive review of the

existing methods in coordinate generation is to be published shortly

(35].) The following two basic criteria have been used in the selection

of material for this chapter.

(i) Derive only those differential relations and equations which

have a direct bearing on the geometry of the generated surfaces, and

which are of a nature of lasting interest for future research.

(ii) Methods to obtain solutions of the developed equations, if

possible.

Two methods, which satisfy the above criteria are discussed below.

However, it is important first to list a few expansions for the ensuing

material from Parts I and II.
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'II

§1.1. Collection of Some Useful Expansions and Notation.

In what follows, the general curvilinear coordinates are again
i

denoted as x . However, when an expression has been expanded out in

full and there is no use for an index notation then we shall use the

symbols 5, n, , where

xi  , x2 = ,x 3  (1)

Rectangular Cartesian coordinates are the components of the position

vector r, i.e.,

r = (x,y,z) (2)

From Part I, eq. (39), the covariant base vectors in space are

3rai=

ax
i

Thus

aI  , a =r , a 3 r (3)

where a variable subscript will always denote a partial derivative.

The metric tensor gij in three dimensions has six distinct components.

The determinant g is then

g M g1 1g2 2g33 + 2g12g1 392 3 - (g23 )
2g11 - (g13 )

2g22 - (g1 2 )
2g3 3  (4)

Writing
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G1 = g22g3 3 - (g2 3 )
2  (5a)

G2 = gllg 3 3 - (g1 3 )
2  (5b)

G3 = g1 1 g2 2 - (g12 )
2  (5c)

O4 = g1 3g2 3 - g1 2g3 3  (5d)

G 5 = g1 292 3 - g1 3 g 2 2  (5e)

G6 = g1 2 g1 3 - gllg2 3  (5f)

we have

g11= G/g , g22 = G2 /g , g
3 3 = G3 /g (6a)

g12 = G4 /g , 913 = G 5/g , g2 3 = G6 /g (6b)

iThe space Christoffel symbols [ij,k] and rk defined in Part I,

eqs. (130) and (133) have been expanded for a three-dimensional space

and listed in Appendix 1. The surface Christoffel symbols of the second

kind T a for various coordinates held fixed are listed in Appendix 2.
'v

(Refer also to Part II, eqs. (82).)
i

As stated earlier, the x or , n, are the coordinates in a

three-dimensional space. In place of using different symbols for a two-

dimensional surface imbedded in the three-dimensional space, we have used

&, n as coordinates on a surface on which ; is held constant. This and

two other possibilities are listed below.
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(i) Coordinates (xl,x 2 ) or ( ,r) on a surface on which x 3 = = const.

(ii) " (x 3 ,x I ) or " " " " " x2 = = const.

(iii) " (x 2 ,x 3 ) or (n,C) " " " " " x = const.

(7)

Note that the right-handed convention is implicit in the ordering of

the coordinates.

The index symbol v is used in parentheses to denote which index or

t
coordinate has been held fixed, with the exception of G (withoutV

parentheses) which stands for the value of G at v = const. as defined

in eqs. (5).

For variations from 1 to 2, or 3 to 1, or 2 to 3, we use Greek

indices. Thus, according to Part II, eq. (37), the unit surface normal

on a surface v - const. will be

(r x r)/r x r,l (8)

where

v 1: a =2 , =3 (surface x1 = = const.)

v 2 : a= 3 , S = 1 (surface x2 - n = const.) (9)

v3: 1, = 2 (surface x3  = . const.)

The rectangular components of n(v) are

tIn Part II, the G V appearing here was denoted as g(v)"
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(v) - (x(v) Y(v) z (v) (10)

The coefficients of the second fundamental form for a surface, b8 ,

have been defined in Part II, eq. (46a). We now adopt the following

notation in place of b W

Sv) n(v) r (no sum on a)

T ff ( rB (11)

u(v) n ( v) (no sum on

where (v,a,8) are in the permutational sequences of (1,2,3) as shown in(9).

The Gauss equations, defined in Part II, eq. (79) are now written as

r =T r + S(O)n (,

fTY + T(nv) (12)

! = TrY + U(v) nv)

where the summation is to be performed only on y, and (v,a,) are in the

permutational sequences of (1,2,3) as shown in (9).

The sum of principal curvatures of the surface v - const., (defined

in Part II, eq. (60)) is now written as
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kZ(V) + k2(V) , (gaU(V) - 2g 8T(O) + g 0S(v))/G (13)

where, in writing eq. (13) for a particular value of v, use must be

made of (9).

The two second order differential operators introduced in Part II,

eqs. (124) and (127), are now written as

A2 (V) _ {-(g^ g }IG- r G-- gBB
V V

+ a{ (-L(g aa g a)}] (14)

(VV

D (t) -gsa 2g a + ga (15)

§2. Differential Equations for Coordinate Generation Based on the
Riemann Tensor.

Earlier in Part I, §8, we discussed the curvature of a general space

in terms of the Riemann tensor. It was shown in Part I, eq. (251) that

the six distinct components of the Riemann tensor Ru k for a three-

dimension space are

R1212 , R13 13 , R2 3 23 , R1 21 3 , R12 32 , R1323

If the space is Euclidean, i.e., E3, then the above components are

identically zero no matter which coordinate system is introduced in this

space. Thus

R1212 0 R1313 -0, R2323 O (16a)
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R1213 0 R , 323 =0 (16b)

Equations (16) are those consistent set of partial differential

equations which must always be satisfied by the metric coefficients gij"

It should be noted that there are six distinct coefficients to be obtained

from the six equations (16), so that we have a closed system of equations.

In contrast, a two dimensional space has only one curvature equation and

three metric coefficients, the four-dimensional space in general rela-

tivity has twenty curvature equations for the ten metric coefficients.

In these cases the system is either under determined or over determined,

respectively.

Using eq. (247) of Part I, we now write the six second order partial

differential equations as dictated by (16).

R2gll 2 2 g1 2 +
2g22

1212 a--2  + D2

ts+ 2g ([22,s][1l,t] - [12,s][12,t]) = 0 (17)

R292ll 2 2 g1 3 + 2 g 3 3

1313 32 + 32

+ 2g tS([33,s][ll,t] - [13,s][13,t]) 0 (18)

a2g922 _ 2 g2 3 + 2 g3 3233= 2 +R2323 3 2 3n 0 n2

+ 2gtS([33,s][22,t] - [23,s][ 2 3,t]) 0 (19)
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a 2 g 1 1  
2 g 1 2  32g13 2 g23

1213 DnD a_ __n -23

+ 2g tS([23,s][1l,t] - [12,s](13,t]) = 0 (20)

R2 g2 2  a2 g1 2  32 g 2 3 + 
2g 1 3

1232 =na a an an 2

+ 2 g tS([22,s][13,t] - [23,s][12,t]) = 0 (21)

R2 g3 3  a2 g 1 3  
2 g 2 3 4+ 1 2

R1 32 3  8-an ana aC@ 3 2

+ 2g tS([33,s][12,t] - [23,s][13,t]) = 0 (22)

For a triply orthogonal system of coordinates

912 = g13 923 = 0 (23a)

[12,31 = [13,21 [23,11 = 0 (23b)

r2 = F = 0 (23c)

g =g 1 1 g 2 2 g 3 3  (23d)

Under the constraint of orthogonality, eqs. (17)-(22) reduce somewhat.

Using eqs. (23) and then multiplying the first equation by I/ gll22,
aecond by I/,-- and the third by 1/g 22g33 , we can put the equations

in the following form.

S g2 -)g 1 _l g 0 (24)

133 11 22
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( g33. +gll 1 agll 'F3 3
ggl.33 Vrgl!'33 2g2 2/gllg 3 3  an an

a 1 ag 3 3  a 1 g22. 1 ag2 2 ag 3 3
a +;2g2g - " " = 0 (26)

ag a 2g g22g33

2 911 _ 1 a11 1 a 11 1 a 22 1 ag11  ag 3 3  (27)
ana 2 an g + 2 3 2g 3 3 aC an

-222 1 ag22  I ag22 1 ag 3 3  1 ag11 ag2 2
aa = 2 a g2 2  ac g3 3  a ) + 2g1 1  a (

2g 33 1 ag33 (1 11 + ag 3 3  1 g22 ag3 3

a--- 2 -- g1 1  an g3 3  an ) +2g 2 2  3C an

Equations (24)-(29) are the celebrated Lam6's equations, which he

obtained in 1859 by following a different approach.

§2.1. Laplacians of , T, and c and Their Inversions.

In Part I, eq. (214), we obtained the Laplacian V20 of a scalar 0,

where

V2 =a +a +
xx yy zz

From the equation for V2€ we obtained the Laplacian of any curvilinear

mcoordinate x , the coordinates being assumed to be functions of the

Cartesian coordinates x, y, z. Thus

V2xm = -gij rm (30a)
i4
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0 (P + G F 2 + G3F33 + 2G4 r 2

+ 2G513 + 2G6 r23) (30b)

where x1 i , x2 - n, x3 = t, and G have been defined in (5).V

The inversion of these equations can be written down by using eq.

(215) of Part I as

gij a2x a _ x V2xm (31a)
ax i x j  ax m

gij 32y = - V2xm (31b)

ij a 2Z - 3z V2x m  (31c)

ax i X ax m

Introducing the operator

L = GIa + G a + Ga + 2Ga + 2G a + 2G6a (32)
1 ~ 2 Tin 3 4E 5 ~ 6 n

we can write eqs. (31) as

Lx = -g(xEV2& + x V2 n + x V2t) (33a)

Ly = V2C + y V2n V2 ) (33b)

Lz = -g(z&V 2  + zn V2 n + z V2 ) (33c)

The operator L reduces to the operator D (defined in Part I, eq. (190))
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for the two-dimensional case. The corresponding equations are then

eqs. (216) of Part I for the surface t f constant.

§2.1.1. Laplacians in Orthogonal Coordinates.

In the case of orthogonal coordinates the equation (30b) can be

simplified to have the following forms for , r, .

V2T g733 (34a)

V2= 1 133 (34b)

V2 g 2 122) (34c)
Fg 33

§2.2. Riemann Curvature Tensor for Specific Surfaces.

It is worthwhile for us at this stage to list the Riemann curvature

tensor for specific surfaces, = const., n = const., and c = const.

We refer to Eqs. (89) and (91) of Part II where the single Riemann

tensor for a surface R and the Gaussian curvature K were defined.

In expanded form the expression for R is

paye yay

* au au
R [f ] _--.[y, ] + T o

- T [by,o] (35)

Thus, for = const.
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R -[22,11 - -[211 + T11,1 ([12,21212 C an 2 +

- T [11,1] - T2  2] (36)
-22 ' 22[1

for n = const.

R = -n[33,1] - a[31,21 + T32[13,3 + TI2 1 3,1]

-T 3 [11,3] - T [11,1] (37)
33 33

for C const.

R ~[33,2] - -L3,1+ T [2,1+T3[,3
2323 T~32 J 32 2,

-T2 3 [22,2] - T 3 [22,31 (38)

For the expressions of T's refer to Appendix 2.

Each one of (36)-(38) can be reduced to different forms. For

example, eq. (36) can also be expressed as follows.

S [-n(-- T 2 ) (39a)

R11 3a g1 11 a&911

: [ (--L- T) - ' g- T1  (39b)
3 aE 922  22 an g22  12

where G3 is defined in (5c). The forms (39a,b) are due to J. Liouville.

The Gaussian curvature for each surface is
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= k = R /G (40a)

K0)= kWkW= RI313/G 2  (40b)

K = k = R /G (40c)
1 2 22

It must be noted that in any one of the formulae, from (36)-(40), all

quantities have to be evaluated for the coordinate held fixed. There

is no difficulty in this process, since any of these quantities have no

derivatives with respect to the variable held fixed.

As obtained in Part II, eq. (90a), we can also write the equations

in (40) as

K)  W - (T(0))21/G (41a)

(Wi W W(41b)]/

[S U - (T())2/G2  (41b)

K = [S( U) - (T())2]/G1  (41c)

In the representation (41), the quantities S, T, U can also be determined

through other quantities which are dependent on the derivatives with

respect to t. These representations thus establish a connection of the

given surface with the neighboring surfaces. This idea has later been

used (see §3, eqs. (74)) to develop a method of coordinate generation

from the data of the given surfaces.

§2.2.1. Coordinates in a Plane.

If the surface = const. (say), on which and n are the parametric
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coordinates, reduces to a plane, then for this surface K( ) = 0. t

Consequently, we have a single equation (selecting either (39a) or

(38b)),

a 0 (42)
an g 1111 3 11 1

In contrast to the six equations (24)-(29) for a three-dimensional

space, we have only a simple equation for two-dimensional space. All

the three coefficients g cannot be determined from this single equation

and additional relations, either algebraic or differential, have to be

imposed to solve eq. (42). We shall return to these problems in §2.4.

§2.3. Determination of the Cartesian Coordinates.

The solutions of eqs. (17)-(22) under the prescribed boundary

conditions should provide all the metric coefficients as a field

distribution, so that by differentiation one can calculate also all the

Christoffel symbols F. Now in any physical problem, e.g., the Navier-
jk*

Stokes equations, only the metric coefficients gij and the Christoffel

i
symbols r' appear in the transformed equations, so that the solutions

jk

of the equations (17)-(22) provide all the essential coefficients to

solve the physical problem. Nevertheless, one sometimes also needs the

values of the Cartesian coordinates x, y, z as functions of 6, r, t.

Our purpose is now to describe a technique for the determination of x,

y, z based on the availability of the metric coefficients.

We define the unit base vectors

tRefer also to Appendix 3 for the Beltrami equations in a plane.
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where there is no summation on i. The components of A i along the

rectangular Cartesian axes are denoted as ui, v, wi respectively, i.e.,

i= (ui'vi'w i) (44)

In total there will be nine values of ui, vi, w.

Now

dr = A / l d + . g 22 dn + X vgj3 d
-1 11 -2 22 -3 33

so that the values of x, y, and z are given by the line integrals

x = f ul.'g1 1 d + u2 /g 2 2 dn + u3 g3 3 d1 (45a)

y f v I g-, d + v 2 Vg2 2 drn + v '-,- d~ (45b)

z f wlvg 1 d + w 2 2 dn + w § d (4 5c)

The determination of ui, vi, wi (i = 1,3) which is needed in eqs.

(45) poses another problem. Their derivatives can, however, be expressed

in terms of ui, vi, wi by substituting (43) in eq. (134) of Part I as

=r +A 2 2 2 j + A g 3 3 F
A i gi

X 1 ij g ii -3 gii ij i

i gii (46)
2gii axj
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where there is no summation on i.

On changing i and j from 1 to 3, we find twenty seven values of the

derivatives from (46). Thus, they form a system of twenty seven first

order partial differential equations to be solved under a prescribed

Cauchy data.

§2.4. Coordinate Generation Capabilities of the Developed Equations.

The derivation of eqs. (17)-(22) has demonstrated quite clearly

that these equations are neither arbitrary nor randomly selected to

generate some coordinate system. They are actually the very basic

equations which every coordinate system in E 3 must satisfy. Any six

symmetric functions gij of a coordinate system F, n, which satisfy

eqs. (17)-(22) are qualified to be called the metric coefficients of

the introduced coordinate system in E 3 .

Despite the versatility and power of these equations, the solution

of these equations is difficult to obtain. The set of equations (17)-,F

(22) form a highly nonlinear system of coupled partial differential

equations. Even if they have been solved, the determination of x, y,

z requires a solution of twenty seven first order partial differential

equations as shown in §2.3. Nevertheless, these equations must form a

basis for future developments. An indepth study into the nature of

these equations, e.g., the compatability conditions and the type of

data to be prescribed as the boundary conditions, etc., has to be

investigated. In the following sub-sections we consider two particular

cases of these equations.

§2.4.1. Two-Dimensional Orthogonal Coordinates in a Plane.

For the case of orthogonal coordinates in a plane, the basic
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equation to start with is eq. (42). When the constraint of orthog-

onality, viz.,

912 -- 0

is imposed, we get the equation

_( 1 ag 2 2 . ___1 11
11122 ( 0 g47)

In Ref. [36] a method has been developed to compute orthogonal

curvilinear coordinates about arbitrarily given inner and outer boundaries.

Equation (47) is first simplified for the case of isothermic coordinates

(refer to §3 of Part II, particularly eq. (144) and the definition

that follows), in which

g = g1  (48)

and eq. (47) takes the much simpler form

32p + p= 0 (49)
3 2 3nT

where

P = Zng1 1

From eqs. (34a,b) we also have the additional conditions, that for

isothermic coordinates
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V2 = 0 , V2n =0 (50)

where now V2 =a +a and = "xx y g 3 3 =l

Equation (49) can be exactly solved in a Fourier series form by

prescribing the values of g11 or P at the inner boundary, denoted at

n = n, and the outer boundary denoted as n = n., as shown in Ref. [36].

The equations (50) are then used to pick out those C distributions

which establish an orthogonal correspondence between the points of the

inner and outer boundaries.

§2.4.2. Three-Dimensional Orthogonal Coordinates.

The governing equations for the three-dimensional orthogonal

coordinates are the Lame's equations and have been stated earlier in

eqs. (24)-(29). These equations are as complicated as their non-

orthogonal counterparts. In this section we shall study two particular

forms of these equations which are amenable to analysis and computation.

In this connection we need the following definitions.

(i) Gaussian curvature in orthogonal coordinates:

For a surface t = const. in which and n are the orthogonal

coordinates, and I is the coordinate normal to the surface, we have

(ef. Appendix 2)

I g 1] 1 ag 22 (1T - , r2  = 51
1I 2g22  On 12 2g 1 51

where G 3  g11g2 2. Thus from (39a), we have

*r
R 1 -,' lg, [ -J( _ _ )+ __)g 22. 1 ag 1 (2
R1212 11- 22f , 1 F.. ri -n r ] ( 242 " Vg 11- 2 2  " -11 22
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Using eq. (24) in (52), we obtain

K(O =R* /G1212 3

1 ag11 ag2 2
4g11g22933  3 D at C const. (53)

(ii) Surfaces of constant Gaussian curvature:

Surfaces for which the Gaussian curvature has a constant value

at every point in the surface are known as surfaces of constant curvature.

The Gaussian curvature can be either zero, positive, or a negative

constant throughout the surface. A surface const. for which K(;) = 0

is a developable surface. A developable surface can be mapped isomet-

rically onto a plane. Recall from Part II, eq. (135) that the isometric

correspondence between two surfaces, when the coordinates on the two

surfaces are the same, is such that the length element ds between two

corresponding points remains the same.

The simplest example of a surface for which K > 0 is a sphere

of radius R for which K(O = 1/R2 . If a sphere or a spherical cap can

be deformed in any other shape whatsoever without stretching, then its

Gaussian curvature will not be altered. In the case of K(O > 0, every

surface of constant curvature can be mapped isometrically on a sphere

(r) -1/2
of radius (K('). All these results are explained in books on dif-

ferential geometry, e.g., [17].

We now consider the following two cases of orthogonal coordinates.

Case I:

Since the coordinates in the surface are orthogonal, the length
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element for C - const. is

(ds())2 = g11 (dE)
2 + g2 2 (dn)

2  (54)

e now select = const. as any arbitrary curve. Through every point

of this curve a geodesic can be drawn. We call these curves as n =

const. Obviously F, n are orthogonal. From Part II, eq. (107b) we

have the result that for n = const. to be a geodesic we must have

ag 1 1
-=0

Thus the metric which we select for Case I is

gll (E'0)  g22 ( 'n '  'g3= 1 (55)

where t remains fixed on each selected surface. Since gll is not a

function of n, we can define an arc legnth as a perfect differential

du for each C = const. as

du =.g 1 dC

Thus

(ds(O)2 (du)2 + g2 2 (dr) 2  (56)

In the literature, the coordinates u, q are known as geodesic polar

coordinates, since a point 0 on the surface can be chosen where

u = 0 g2 2 (0,ri) = 0
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so that ds (  = 0.

We now substitute (55) in (52), and have

* 1 Vg- 3g 2-.

'22

or,

K 1 _ (57b)
2g2 g 22

Thus

a2 )gv 2

--- (Vg,)) ) + K( O = 0 (58)

Solving eq. (58)

s 1 sin(u J7) (59)

the parameter u being the arc length along the geodesic coordinates

c const.

A study of eq. (53) shows that for K to remain constant, the

forms of gll and g2 2 should be

II
922 ()F(,)

so that
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KI

K(t) =(A4'-L)

= const.

The form of the function F(&,n) is fixed by the solution (59).

The preceding method can be made a basis of numerical coordinate

generation for those surfaces which can be isometrically mapped on

spheres of varying radii.

Case II:

In this case we select the metric such that in the surface =

const., the coordinates are isothermic. Thus we take

g2 2  1 1  g33 =l (60)

Under the constraint (60), eqs. (24)-(29) simplify to the following

equations:

_ 1 ag . 1 ag ag
) ") + 11 + 1- 1-  ) 0 (61)

911 3 ang11 a 2g11 a

-1 11 = 0 (62)

g~ll

a 1 11 (63)

( g) = 0  (64)

1& 9 11 (64

while eq. (53) becomes
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K(O) 1 '-gl 2 (5
= 4 (gll)(- ) (65)

A study of eqs. (62)-(64) suggests that the only form gll can have

is

9 = (A + Bz) 2 f(Cr) (66)

where A and B are arbitrary constants, and f > 0.

S-ubstituting (66) in (61), we obtain the equation for f as

1 af a 1 f 2ff

- (4 " " 1 T + i-:(: -') + 2B2 f = 0 (67)

Writing

Q =nf

we get

12 + '2Q + 2B2eQ = 0 (68)

which is an equation similar to eq. (49) except ror the last term.

We now substitute (66) in (65), and have

K B2/(A + Br)2  (69)

Thus, for each r const. the surfaces generated will be of constant

Gaussian curvature. Numerical techniques can be used to solve eq. (67).

In the context of isothermic coordinates in the surface and g3 3 - 1,
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we have the following additional equations from eqs. (34).

V2C = 0 (70a)

v2n = 0 (70b)

Sag
ll -1 11 (70c)

With eqs. (70) available, it is possible to develop a complete

algorithm for numerical coordinate generation.

§3. Differential Equations for Coordinate Generation Based on the

Formulae of Gauss.

In this section we shall discuss another method of coordinate

generation suitable for three-dimensional situations and which has the

added property that the method reduces to the method of Ref. [29] for

two-dimensional plane regions. Some details are available in a previous

publication, [371.

Before developing the proposed method it is important to have the

following formulae.

From Part I, eq. (134), we have

r l r + r2r + r3 r(7a

r = r + r + r32r (71b)

rnn r2 + r 2 r + r32 r (71c)

-nn 22-E 22-n 22-C(7c

where the 3-space Christoffel symbols are given in Appendix 1.
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We now consider a surface designated as 4 - const. on which E and

n are the parametric coordinate. Then from eq. (12), we have

r TI r +T 2 r+ S(O) (4)  (72a)

r .T 1 r + T2 r + T()n() (72b)
tnr 12-E 12-rn

r =T 1 r + T22r + U()n ( 4)  (72c)
nnlf 22-C 22-n~

where the 2-space Christoffel symbols for 1 = const. are given in Appendix

2.

Taking now the dot product of every term with n
( ) in both eqs.

(71) and (72), we obtain

= •(n(O r )r3I  (73a)

T(r) (()3
=(O • r )r3 (73b)

-t -1 2

U(r) = (n(4) r )r32  (73c)

All 4-derivatives in eqs. (73) are assumed to be evaluated at C
ff const.

The above procedure can be repeated for constant t and n surfaces.

However, in what follows we shall be obtaining formulae only for ; -

const. surfaces, and for brevity of notation drop the superscript (r)

from the formulae. Thus

S n r (n r )r3  (74a)
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T -n~r - (r (74b)

U - n r (n r)r (74c)

where

• a -Xx + Yy + Zz . (74d)

§3.1. Formulation of the Problem.

We multiply eqs. (72a)-(72c) respectively by g2 2, -291 2, g11 9

adding and using eqs. (13)-(15) to have

Dr + G3(rA 2  + rnA2
n) - G3 1(kI + k 2) (75)

where

D - g22 t - 2g1 2 n + g11 nn

A -L2 1 gTI gI

2 G3(2g 1 2T12 - 2- gllT 2)

(76)

A -L 2TT2 l2
A2n G 31(2g 1 2 T1 2 - g2 2 11 - 21 1 T 2 )

G3 = g11g2 2 - (g12)2

To obtain an expression for k, + k2' we take the scalar product of

(75) by n and use eqs. (74)

G3(k + k2) = (i • r)(gllr3  - 2g 1 2 r 2 + g22r3) (77)
3 11122 1
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We now propose to put constraints on the coordinates F and n such that

A2E ' 0 (78)

A2n = 0 (79)

With these constraints, the differential equations for the determination

of the Cartesian coordinates are given by

Dr - G3n(k1 + k2) (80)

In expanded form, eqs. (80) are

922xF - 2g1 2xE + gllx n = X • R (81)

g22Y - 2g12YFn + gllYn1  = Y - R (82)

g22z -
2g12zc, + g11 ZT - Z - R (83)

where

R (Xx + Yy + Zz )(gr 3  
- 2g1 2r32 +g 2 2r11 ) (84)

11 22 121 221)(4

and

Xi= (yz - ynZ)/vG

Y (xz ',z )/IG/3 (85)

Z - (x y - Y

Fn nF;& 3
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The proposed constraining equations form the core of the method.

Firstly it must be noted that A2 is neither a Laplace operator in the

Cartesian plane (x,y), nor in the Cartesian space (x,y,z), though it

reduces to a two-dimensional Laplace operator when the surface reduces

to a plane surface, viz., no dependence on z. Secondly, the eqs. (78)

and (79) express an attempt in providing a set of basic constraints on

the distribution of g 8a in a surface, which is perfectly legitimate.

Another important observation in favor of these equations is the

following. Using the expressions for the Christoffel symbols appearing

in eqs. (76), we can also write

I rL .g22. 3 (gl2)
a 2(-- - 1 (86)

3 3 3

2n Tll -'19g1  (87)
3 33

In the case of isothermic coordinates, viz., when g22 - g1l, eqs. (86)

and (87) are identically satisfied. There is a parallel situation in

the case of conformal coordinates in a plane where Laplace equations are

satisfied identically.

§3.1.1. Particular Case of Eqs. (81)-(83). (Minimal Surfaces).

For surfaces in which isothermic coordinates have been introduced

and at each of its points the mean curvature is zero, we have from eqs.

(8l)-(83),

173

A Im



x + Xnn = 0 (88a)

+ i Yn (88b)

zF + z n 0 (88c)

Such surfaces are called the minimal surfaces.

As an example, a minimal surface of revolution can be obtained by

first assuming

x = f(y))cos& , y f(O)sin , z -g(n) (89)

From (89), we obtain

8 , fz 91 0 ,22 f'2 + g'2

prime denoting differentiation with respect to n.

The isothermic condition gives

f,2 + g,2 
- f2  (90)

while eqs. (88) give

f" - f 0 (91a)

g" -0 (91b)

A solution satisfying (90) and (91) is

f(n) - A cosh n

(92)

g(n) - B + An
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where A and B are arbitrary constants. Thus when (92) is substituted

for f and g in (89) we obtain a minimal surface of revolution.

§3.2. Coordinate Generation Between Two Prescribed Surfaces.

We now consider the problem of coordinate generation between two

surfaces denoted as n i B and n = n in Fig. 11, where E and are the

parametric coordinates in these surfaces.

Equations (81)-(83) form a quasilinear system of partial differential

equations in which the components of the vector r are assumed to be

prescribed or available through some interpolation/extrapolation numerical

scheme. Since the values of x, y, z are known on the basic inner and

outer boundaries (cf. Fig. 11), the values of (r ) and (r ) =nB TiB

are known. Thus a suitable way of prescribing r in space can be

f (n)() = nB + f2 ()(r = (93)

where fl(n) and f2 (n) are suitable weights having the properties

(94)

fl(q.) 0 , f2 () 1

Referring to Fig. 11, we now solve eqs. (81)-(83) for each r

const., on a rectangular plane by prescribing the values of x, y, and z

on the lower side (CI ) and upper side (C2) which represents the curves

on B and - respectively. The side (C3 ) and (C4 ) are the cut lines on

which periodic boundary conditions are to be imposed. The preceding

analysis thus completes the formulation of the problem.

175

" --



_Flow

(a)

(b)

Figure 11: (a) Topology of the given surfaces. Inner n n t outer
current variables ,4. (b) Surface to be generates for

each 4 const., current variables ,.
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§3.3. Coordinate Redistribution.

For the purpose of generating coordinates between the space of the

inner and outer boundary, which can be distributed in a desired manner,

we consider a coordinate transformation from to X and n to a. Let

= (x) +

(95)

n = n(o) + B

then

=0 at x = X0 , ) = 0

(96)

n= IB at a = aB , n(oB) = 0

Writing

=d 0(o) d-- 9a
X(X) dX ' do (97a)

and denoting the transformed metric tensor as gi., we have

g /A2  - = x2 + y2 + z2 (97b)

g1 2  91 2/0 ' g12  Xx a + yxyG + z (97c)

22= g2 2/0
2 

,g 22 = x + + (97d)

G3 = G3 /6 2A2 
, G3 = gllg22 - (g12)

2  (97e)

X=X , Y - Y , Z = Z (97f)
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kl+ k 2 =k +k 2  
(97g)

R R/02x2  
(97h)

Further noting that

[]rg
= (r×× - - )/x (98a)

r , = xo/OA (98b)

rO

r -(r - 1_)02 
(98c)

Substituting eqs. (97) and (98) in eqs. (81)-(83) we now 
have the

following set of equations

g2 2 xx 2
2 Xg x + + + X (99)

g22yxx - 2g-2xo + g1YOO Pyx + Qy + " (100)

922Zxx - 2 &1 2 ZxO + g1 1 z 00  pz x + Qz0 + . (101)

where

g 22
P = -A-

x X

g (102)

Q -

Thus, by choosing X and 8 arbitrarily 
we can redistribute the coordinates
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in the desired manner. An example of this choice is given in the

next section.

§3.4. An Analytical Example of Coordinate Generation.

In this section we shall consider the problem of coordinate

generation between a prolate ellipsoid (considered as an inner body)

and a sphere (considered as an outer boundary), with coordinate contraction

near the inner surface. This problem yields an exact solution of the

equations (99)-(101).

Let n =B and r = n be the inner prolate ellipsoid and the outer

sphere respectively. The coordinates which vary on these two surfaces

are E and . We now establish a net of lines made of const. and t =

const. on both surfaces. A curve C on the inner surface designated as

= is

x = cosh n cos

y = sinh nB sin c0 Cos (103)

z = sinh n sin ; sin

Similarly, the curve C2 corresponding to = on the outer surface is

x = e cos 0

y =e sin 0 sin
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z = e sin 40 sin

(104)

Based on the forms of the functions x, y, z in (103) and (104), we

assume the following forms of x, y, z for the surface =

x = f(o)cos 0

y = O(o)sin 0 cos C (105)

z = 4(G)sin 0 sin E

The boundary conditions for f and 0 are

f(a B ) = cosh nB

rii

f(o) = e

(106)

0(.) = sinh B

am) = e

Calculating the various derivatives, metric coefficients, and all

other data needed in eqs. (99)-(101), we get on substitution an equation

which has sin 2C0 and cos
2c0. Equating to zero the coefficients of sin2r0

and cos 2 
0 , we obtain

f" + (107)
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(108)

where a prime denotes differentiation with respect to a. Equations

(107) and (108) can be directly integrated. The solution under the

boundary conditions (105) and (106) is

f(a) = A exp(Bn(a)) + C (109)

(a) = D exp(Bn(a)) (110)

where

A = (exp(ri) - cosh n B)sinh fB/(exp(n.) - sinh n B) (llla)

B = £n[(exp(n.) - sinh nB)  ] (l1b)

C = (cosh qB - sinh nB)exp(n.)/(exp(n.) - sinh nB)  (lllc)

D = sinh nB (111d)

As an application we take the functions E(X) and n(a) from Ref. [381,

C(x) = aX

r(o) = b(a - OB)Ka

where a and b are constants. Since at n.,

ri( ) = n- B

hence
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(n(B - nB )  - OB) K( Bn(o) a (112)
o - B

where K > 1 is an arbitrarily chosen constant. A value of K 1.1

gives sufficient contraction of coordinates near the inner surface.

For the chosen problem, since the dependence on is quite simple,

we find that the coordinates between a prolate ellipsoid and a sphere

with contraction are given by

x [C + A exp(Bn(o))]cos

y = D exp(Bn(o))sin Ccos (113)

z = D exp(Bn(o))sin sin

where A, B, C and D are given in eq. (111).

A computer program based on eqs. (99)-(101) has been developed by

Ziebarth by using the method of finite difference approximation. The

differenced equations are solved by using the point-successive over

relaxation method. Complete duplication of the exact solution obtained

above has been achieved.

John Ziebarth, private communication.
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Appendix 1

Christoffel Symbols in Three-Dimensional Coordinates

First kind:

[ij,k] = [ji,k] 1 ' k -- +
axi  axk

iagl

[13,1] =2

1 11 2[12,1] = 2 B--

[13,1] :2@

[22,1] =- (2 g )

[23,1] 12 ag1 3  'g23

1= ag13  ag3 3

(11,2] = i(2 Bg2 - 1)
a n

1 3822
[12,2] 1 22

1 g12  ag2 3  ag13
[13,2] = --T' + -- )
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7a[22,21 = 122

2 3n2

[23,2] =  2 3;

1 ag 23  ag 33[33,2] = 1(2 g n

[1,3 =1 13 ag 1 1
[1, 72(2 y--aj

] 1.13 ag23  3g12[12,3] = _[ - + ) 1 "

1 ag 33[13,3] = 2 DE

[22,3] = 1 ag23  ag22

2 a - __

[23,3] = I ag 33
a n

[33,3] = 1 ag 3 3
2 37

For triply orthogonal systems: [23,11 = [13,2] = [12,3] = 0.

Second kind:

S=i = gi [jk,I
jk kj

Therefore, using eqs. (5) and (6) of Part III, we have
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Fk= -{G[Jkl] + G4 [jk,2] + G5 [jk,3]1

r = 1{G4[jk,l I + G2[Jk,21 + G6[Jk,31I

jk -tG4 [ k 1 2 J6

r~k -- {G5 [jk,l] + G6[jk,2] + G3 [jk,3]1}

11 +1 a4( 912  ag11  ag1 3  ag 11
11 2g 1 a 4 )cG3T) 5

1 aLgGl 11 +G ag2 2 + g1 3  ag23  ag12
12 2g 1 G 4 G5(----+ -

1 ag ag1 2  + @g2 3  ag 3 a 3 3
4--G -+ + 13-) + G }

13 2g 1 3 4~ 3 a an 5

1= g{G(2 a8g1 2  a8g2 2  ag22 + G5(2 ag2 3  ag22
a2 2g 1 +n 4 -an G5( an - a

=l 1g ag1 2  a8g13  ag2 3 + g2 2  ag33
23 a + a - a' + G4 -' + G5  8

1i = (2 8
g
1 3  a8g33  ag23  ag3 3. ag3 3 1

33---- - ) + G4(2 5 - ) + G5  a

= 1 ag 2 g12 ag ) + ag 1 3  ag1 l
1 - 11 + G + G (2
1 2g 4 a G2  g~ an 6( ac

1g 1 1  ag22  .ag1 3  ag23  ag121 2g4 a + G2 3& + G6  a + a a ;

r2 = 1g{G + G(g 1 2  ag2 3  a8g1 3  a8 3 3 ,13 (G + 2-- +  + 6 -
13 2g 4 a +2( ac an + 6 a8

185



ag1  ag2  "-22  'g23  'g22  
*

r 2 ~'-1 2-- 22 +n Ga2r
2 2g 4 an an

ra LG 3 12  a g13  ag 23+G ' 22 + ag33
23 =2gt4(5 + 2~3 +---G 6 aT

Dg3  g3  a823  ag3  ag 33

r2 =-'-G (2 - + 2 - ) +G-a,
33 2g 4 a 2 ~ a

Bg1  ag 1  (2 gD13  g1

3 LG 19,+G (2 -4- 2 -~-~- + G 3( _- _ a I

3 LGag 11  a g22  a8 13  '9a23  Dg12

12 2g 5 ai G6-7 a + 3 a+ a

ag_ 'g-12 -g2 g1) + 'g- 3

-L{G 11 ~ + Gag 1+ 3  ag33
r 13 2 5 a 6 a an 3 a

ag1  a'2 g22  'g23 _a822

r3 =L{G (2 - 1 - -) + G 6 3r+ G 3(2 a-i-- a

ag 12 _ag 13 _ag 2 3  'g22 +Gag33)

3 -LJ an _ )+ 6 aT; 3 ayn
23  2g -5+ Gn -

1 'g13  'g33  ag23  a 33 + ag33

33 2g 5(2 a G(~ n

r' r2  F3  0.

For triplY orthogonal systems: 2 13 1
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Appendix 2

Christoffel Symbols Based on Surface Coefficients

() Surface t = constant:

T'1  1g -gl + g 2 (gl- - 2 ag12)1

22 - 22  12 a-a

T2  g22  gag 22  ag12.

3 a

23g (2 ag12  ag22  1 g22
2i2 j-- a " - g1 2 a

_' a 12  ag.11  ag11T2 -I [g (2---)-g
1 2G 11 a an 12 at

i 1 ag2 ag2212 21 2Gj2 3 T

T2 2 = a- 2(g ' g2  a 11

(ii) Surface n = constant:

agl 1  ,ag1 l ag13 .

T I  = g 22[ 3-- + g-ag 2 lg3)

11 2G33 g1-3 2-)]
2

1 g g3 3 + gag 33 -ag 1 3

33 2Ga2 11 g - 2 a

T =I G2[g3(2 ag13  ag33 . ag3 3

33 G 3 3 2 a DE 13 a;
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T 3 
= 2 13 g11  ag11 l11 L912G2 11 Z~13 3]

= 2 1 1~ ~ ag33
T = --1 (g 33 - - g1 -

(iii) Surface constant:

T2 g a22 + g 22 - ag23

22 2 1g33 n g23a

3 1 g33 ag33  ag 2 3

T~ -( 2 g ~--+ 22~ - 1

T2 2j[g 3 3 (2 'g23 'g33  5 ag 3 3
33 2G 33 - g23 -- j

T9
3  1 [ g23 ag 2 2  ag22

22 1 2 a1~ 23~~
T22 2G 2[22( an ac ) -g2

T2 T 2  1 ag2 2  ag3 3

23 32 2G1(g3 3 3; g2 3 an

13 T ag 33  ag 22
23 32 -G122 a g 2 3 3

In the preceding formulae, the coefficients G1, G2 and G3 are those

which have been defined in eqs. (5) and (6) of Part III.
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Appendix 3

The Beltrami Equations

For a study of the curvilinear coordinates in plane two-dimensional

regions the technique of quasiconformal mapping is frequently used.

Quasiconformal mappings are more general and flexible than the usual

conformal mappings. For details on the mathematical aspects of the

quasiconformal mappings, refer to [39] and [401.

A quasiconformal mapping of a region D onto a region D is given by

a one-to-one continuous mapping whose inverse is also continuous

(homeomorphism). The mapping function w = f(z,z) for this case is taken

as a solution of the complex equation

f-- H(z,z)f = 0 (1)

z z

where

z = x + iy z = x -iy, i =

The complex equation (1) is called the Beltrami equation, which is

equal to the two real equations

-nx= 6 x + YCy (2)

= ix + y (3)

where

f(z,z) = E(x,y) + in(x,y) (4a)

189



H(z,z) = (x,y) + iv(x,y) (4b)

= [(1 - p)2 + v2]i A  (4c)

a -2v/A (4d)

y = [(1 + p)2 + V2 ]/A (4e)

A = 1 - (p2 + v2 ) (4f)

Note that

S 2 = i (6)

a + y =2(2- A)/A (7)

A quasiconformal mapping becomes conformal when H = 0, or, equivalently

= = , a = 0. In this case eqs. (2) and (3) reduce to the Cauchy-

Riemann equations

Cx = y ,y ==n (8)
y y x

and f(z) is then a holomorphic or analytic function in D.

Now, from eq. (1)

IH12 = 02 + V2 = If T/fzI 2

so that on using eqs. (175)-(177) of Part I, we obtain

A = 4gl[2Vg + (g11 + g22 (9)

Substituting (9) in (7), we get
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01 + Y = (gll + g22 )/
g  (10)

Equations (2) and (3) can also be written by using the inversion

relations given in Part I, eq. (177), as

= z YB - 8xq (11)

Y = y - yx (12)

Solving eqs. (11) and (12) for x and y , we have

x =x ay (13)

Yx - y (14)

The Beltrami equations (13), (14) form a system of first order

partial differential equations for numerical coordinate generation.

The coefficients a, a and y are related, as can be seen by solving eqs.

(6) and (10),

='Y = [gll + g22 + {(gll + g2 2)
2 - 4(l + 02)g}1/212 g (15)

The choice of can be based on the minimization of a certain functional

to ensure uniqueness. This algorithm has been followed in Ref. [41].

If orthogonal coordinates are desired, then using eqs. (13) and (14)

in the orthogonality condition

912 x x n + y yr 0

r, 191
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we obtain through the algebraic equation

(y - Ox y

-y E2

An iterative numerical scheme can now be used to solve the coupled

system of equations (13)-(16).
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INDEX

Absolute differentiation, 42
property, 36

Acceleration vector, 62

Algebra of tensors, 36

Angle between coordinate curves in space, 65
between coordinate curves in a surface, 105, 131

Antisymmetric tensor, 13, 14

Area element, 67, 68

Asymptotic curves in a surface, 113

Axioms of Euclid, 21

Base vectors, 9, 12

Beltrami's differential parameters, 130, 131, 134, 135

equations for plane curves, 189, 191
second order differential operator, 133, 134, 151, 172

Bianchi's identities, 79, 80

Binormal vector, 99

Cartesian coordinates, 3, 159

Cauchy-Riemann equations, 190

Christoffel symbols in space, 38, 39, 183
in a surface, 118, 119, 187

Codazzi-Mainardi equations, 123

Conformal mapping of surfaces, 138

Contravariant components of vectors, 9, 12, 28
of tensors, 13, 28

Coordinate generation, 59, 145, 158, 161, 169, 172, 175, 179

Coordinate redistribution, 176

Covariant components of vectors, 9, 12, 28
of tensors, 13, 28
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INDEX (continued)

Covariant derivative, 40, 41, 43
divergence-free tensor, 58

Cross product of vectors, 5, 26, 66

Curl of a vector, 56

Curvature invariant, 78

Curvilinear coordinates, 11

Developable surface, 164

Displacement vector, 14, 19

Divergence-free tensor, 57, 93

Divergence of a vector, 55
of a tensor, 57

Dot product, 4

Dyad, 9

Elliptic points, 109

Energy-momentum tensor, 81

Equiareal mapping, 137

Euclidean space, 18

Event-space, 81

First fundamental form for a surface, 103, 104

Flat space, 72

Formulae of Gauss, 118, 169

Fundamental metric coefficients, 21, 23, 34

Galilean transformation, 84

Gaussian curvature, 115, 123, 164

in orthogonal coordinates, 163, 164

Geodesic coordinates, 127, 130
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INDEX (continued)

Geodesic mapping 137

Geodesic polar coordinates, 77

Geodesic curvature, 125, 126, 127

Gradient of a scalar, 15, 54

of a vector, 16,55

Homeomorphism, 188

Hyperbolic points, 109

Idem tensor, 13, 27

Inertial frames, 82

Inner product of two vectors, 4
of two tensors, 11, 37

Intrinsic derivative, 59, 61, 62

Isometric coordinates, 137

Isothermic coordinates, 139, 140, 167

Isotropic curves, 139

Jacobian determinant, 29

Kronecker delta, 12

Lam4's equations, 154

Laplacian of a scalar, 58
of curvilinear coordinates, 51, 52, 156

Lines of curvature, 113, 114

Local Cartesian coordinates, 76

Lorentz transformation, 83

Magnitude of a vector, 64

Mean curvature of a surface, 115

Meusnier's theorem, 110
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INDEX (continued)

Minimal surface, 115, 173, 174

Minkowski momentum vector, 86
force vector, 87

Navier-Stokes equations, 92

Non-Euclidean geometry, 22

Normal curvature of a surface, 107

vector, 107
to a surface, 106

Orthogonal coordinates, 153, 162, 163, 191

Parabolic point, 109

Parallelism, 63, 130

Permutation symbols, 5, 26

Physical components, 66, 67

Position vector, 19

Principal curvatures, 111, 112, 113
directions, 111, 112
normal to a curve, 97

Quasiconformal mapping, 189

Ricci's tensor, 77
theorem, 44

Riemann curvature tensor, 73, 156

Riemannian geometry, 22

Riemann-Christoffel tensor, 71

Right-handed convention, 3

Second fundamental form for a surface, 109

Serret-Frenet formulae, 101

Space, 19, 68
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INDEX (continued)

Summation convention in Cartesian coordinates, 4
in curvilinear coordinates, 11

Third fundamental form for a surface, 124, 125

Three-dimensional coordinate generation, 145

Torsion of curves, 101

Transformation of coordinates, 31, 32

Transpose of a dyad, 9

Two-dimensional coordinate generation, 59, 161, 191

Unit normal vector, 96
tangent vector, 96

Unsteady coordinates, 91

Volume element, 68

Weingarten equations, 117
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